Update: Independent researchers find no evidence for arsenic life in Mono Lake
NASA has made a discovery that changes our understanding of the very makeup of life itself on earth. I think my favorite scientific discipline name is astrobiology. NASA pursues a great deal of this research not just out in space but also looking at earth based life. Their astrobiology research has changed the fundamental knowledge about what comprises all known life on Earth.
Felisa Wolfe-Simon processing mud from Mono Lake to inoculate media to grow microbes on arsenic.
Carbon, hydrogen, nitrogen, oxygen, phosphorus and sulfur are the six basic building blocks of all known forms of life on Earth. Phosphorus is part of the chemical backbone of DNA and RNA, the structures that carry genetic instructions for life, and is considered an essential element for all living cells.
Phosphorus is a central component of the energy-carrying molecule in all cells (adenosine triphosphate) and also the phospholipids that form all cell membranes. Arsenic, which is chemically similar to phosphorus, is poisonous for most life on Earth. Arsenic disrupts metabolic pathways because chemically it behaves similarly to phosphate.
Researchers conducting tests in the harsh, but beautiful (see photo), environment of Mono Lake in California have discovered the first known microorganism on Earth able to thrive and reproduce using the toxic chemical arsenic. The microorganism substitutes arsenic for phosphorus in its cell components.
“The definition of life has just expanded,” said Ed Weiler, NASA’s associate administrator for the Science Mission Directorate. “As we pursue our efforts to seek signs of life in the solar system, we have to think more broadly, more diversely and consider life as we do not know it.” This finding of an alternative biochemistry makeup will alter biology textbooks and expand the scope of the search for life beyond Earth.
In science such huge breakthroughs are not just excepted without debate, however, which is wise.
Thriving on Arsenic:
In other words, every experiment Wolfe-Simon performed pointed to the same conclusion: GFAJ-1 can substitute arsenic for phosphorus in its DNA. “I really have no idea what another explanation would be,” Wolfe-Simon says.
But Steven Benner, a distinguished fellow at the Foundation for Applied Molecular Evolution in Gainesville, FL, remains skeptical. If you “replace all the phosphates by arsenates,” in the backbone of DNA, he says, “every bond in that chain is going to hydrolyze [react with water and fall apart] with a half-life on the order of minutes, say 10 minutes.” So “if there is an arsenate equivalent of DNA in that bug, it has to be seriously stabilized” by some as-yet-unknown mechanism.
It is sure a great story if it is true though. Other scientists will examine more data and confirm or disprove the claims.
“We know that some microbes can breathe arsenic, but what we’ve found is a microbe doing something new — building parts of itself out of arsenic,” said Felisa Wolfe-Simon, a NASA Astrobiology Research Fellow in residence at the U.S. Geological Survey in Menlo Park, Calif., and the research team’s lead scientist. “If something here on Earth can do something so unexpected, what else can life do that we haven’t seen yet?”
Continue reading →