Gene Duplication and Evolution

Posted on February 17, 2009  Comments (3)

Roughly 10 million years ago, a major genetic change occurred in a common ancestor of gorillas, chimpanzees, and humans. Segments of DNA in its genome began to form duplicate copies at a greater rate than in the past, creating an instability that persists in the genome of modern humans and contributes to diseases like autism and schizophrenia. But that gene duplication also may be responsible for a genetic flexibility that has resulted in some uniquely human characteristics.

“Because of the architecture of the human genome, genetic material is constantly being added and deleted in certain regions,” says Howard Hughes Medical Institute investigator and University of Washington geneticist Evan Eichler, who led the project that uncovered the new findings. “These are really like volcanoes in the genome, blowing out pieces of DNA.”

Eichler and his colleagues focused on the genomes of four different species: macaques, orangutans, chimpanzees, and humans. All are descended from a single ancestral species that lived about 25 million years ago. The line leading to macaques broke off first, so that macaques are the most distantly related to humans in evolutionary terms. Orangutans, chimpanzees, and humans share a common ancestor that lived 12-16 million years ago. Chimps and humans are descended from a common ancestral species that lived about 6 million years ago.

By comparing the DNA sequences of the four species, Eichler and his colleagues identified gene duplications in the lineages leading to these species since they shared a common ancestor. They also were able to estimate when a duplication occurred from the number of species sharing that duplication. For example, a duplication observed in orangutan, chimpanzees, and humans but not in macaques must have occurred sometime after 25 million years ago but before the orangutan lineage branched off.

Eichler’s research team found an especially high rate of duplications in the ancestral species leading to chimps and humans, even though other mutational processes, such as changes in single DNA letters, were slowing down during this period.

Related posts: 8 Percent of the Human Genome is Old Virus GenesMutation Rate and EvolutionDNA Passed to Descendants Changed by Your Life

These duplications have created regions of our genomes that are especially prone to large-scale reorganizations. “That architecture predisposes to recurrent deletions and duplications that are associated with autism and schizophrenia and with a whole host of other diseases,” says Eichler.

Yet these regions also exhibit signs of being under positive selection, meaning that some of the rearrangements must have conferred advantages on the individuals who inherited them. Eichler thinks that uncharacterized genes or regulatory signals in the duplicated regions must have created some sort of reproductive edge. “I believe that the negative selection of these duplications is being outweighed by the selective advantage of having these newly minted genes, but that’s still unproven,” he said.

Read the full press release: Did Increased Gene Duplication Set Stage for Human Evolution?

3 Responses to “Gene Duplication and Evolution”

  1. Curious Cat Science Blog » Essentials of Genetics Website Reference
    May 24th, 2010 @ 3:53 pm

    Scitable is a science library and personal learning tool on genetics…

  2. Refusal to Follow Scientific Guidance Results in Worms Evolving to Eat Corn Designed to Kill The Worms » Curious Cat Science Blog
    March 22nd, 2014 @ 11:59 am

    An understanding of natural selection and evolution is fundamental to understanding science, biology, human health and life. Scientists create wonderful products to improve our lives: vaccines, antibiotics, etc.; if we don’t use them or misuse them it is a great loss to society…

  3. Unexpected Risks Found In Editing Genes To Prevent Inherited Disorders » Curious Cat Science and Engineering Blog
    January 1st, 2017 @ 5:49 pm

    […] transferring only male embryos for gestation to avoid introducing heritable genetic modification during initial clinical investigations. […]

Leave a Reply