Toyota’s Newest Humanoid Partner Robot

Posted on November 22, 2017 1 Comment

T-HR3 reflects Toyota’s broad-based exploration of how advanced technologies can help to meet people’s unique mobility needs. T-HR3 represents an evolution from previous generation instrument-playing humanoid robots, which were created to test the precise positioning of joints and pre-programmed movements, to a platform with capabilities that can safely assist humans in a variety of settings, such as the home, medical facilities, construction sites, disaster-stricken areas and even outer space.

“The Partner Robot team members are committed to using the technology in T-HR3 to develop friendly and helpful robots that coexist with humans and assist them in their daily lives. Looking ahead, the core technologies developed for this platform will help inform and advance future development of robots to provide ever-better mobility for all,” said Akifumi Tamaoki, General Manager, Partner Robot Division.

T-HR3 is controlled from a Master Maneuvering System that allows the entire body of the robot to be operated instinctively with wearable controls that map hand, arm and foot movements to the robot, and a head-mounted display that allows the user to see from the robot’s perspective. The system’s master arms give the operator full range of motion of the robot’s corresponding joints and the master foot allows the operator to walk in place in the chair to move the robot forward or laterally. The Self-interference Prevention Technology embedded in T-HR3 operates automatically to ensure the robot and user do not disrupt each other’s movements.

Onboard T-HR3 and the Master Maneuvering System, motors, reduction gears and torque sensors (collectively called Torque Servo Modules) are connected to each joint. These modules communicate the operator’s movements directly to T-HR3’s 29 body parts and the Master Maneuvering System’s 16 master control systems for a smooth, synchronized user experience.

Learn more on Toyota’s news site.

Related: Toyota Develops Thought-controlled Wheelchair (2009)Robots for Health Care from Toyota (2017)Toyota Human Support Robot (2012)Lexus Has Built a Working Hoverboard (2015)

Toyota Human Support Robot

Posted on September 25, 2012 12 Comments

Toyota continues to develop their partner robot initiative. Demographics in Japan make a compelling case for the need to provide solutions to those who need assistance to support independent living.

The aim is to contribute to the maintenance and improvement of quality of life.

In cooperation of the Yokohama Rehabilitation Center, Toyota conducted experiments for disabled people, using HSR in their homes, in 2011. Toyota has been integrating the feedback to the design, based on actual user experience.

The Human Support Robot (HSR) can pick up something on and bring it to the person. Also it can do small tasks such as opening the curtains.

Controlling the robot can be done easily, by using the voice recognition function or using a tablet control. In addition, Toyota is designing it to directly assist the person, helping them get into and out of a bathtub, for example.

They are also developing new features for remote viewing and remote operation (to provide off site help to make the robot more useful). They are working with health care professionals, including nurses, and research institutions aimed at practical use for such a robot.

Toyota, along with several other Japanese companies, continue to invest a great deal to create personal care robots.

Related: Toyota Partner RobotsToyota Develops Thought-controlled WheelchairHonda’s Robolegs Help People WalkToyota Winglet, Personal Transportation

Read more

Toyota Scion iQ: 37 MPG

Posted on December 6, 2011 2 Comments

I posted on the Toyota iQ a few years ago. It has been successful in Europe for several years and is now available in the USA also as the Scion iQ. Sadly it only gets 37 miles per gallon (the same for city and highway, as it is optimized for city driving). The earlier post discussed the Toyota iQ diesel which achieved 59 MPG (now the UK Toyota sites quotes 64 MPG).

The UK gallon (the imperial gallon) is 1.2 USA gallons – why are we not using the metric system yet 🙁 37 MPG would be the highest yield, for a non-hybrid, in the USA, still it is disappointing when compared to the diesel Toyota iQ figures (64 imperial MPG equates to 53 USA mpg).

The base price for the Scion iQ is $15,595. The car is obviously built for city driving: the small size makes it great for finding parking and navigating small streets.

A fully electric Toyota iQ is being planned for 2012 that can be recharged by 4 hours with a normal electric plug. It can be 80% recharged in 15 minutes with a special adapter. It will have a range of about 65 miles.

I really like the management of Toyota and own stock in Toyota.

On another front, sadly, the company behind the aptera concept car (230 MPG) announced they were closing down.

Related: Companies Sharing Engineering Resources Across the GlobeBigger Impact: 15 to 18 mpg or 50 to 100 mpg?Global Installed Wind Power Now Over 1.5% of Global Electricity Demand

Toyota Develops Thought-controlled Wheelchair

Posted on July 1, 2009 8 Comments

Toyota has developed a thought-controlled wheelchair (along with Japanese government research institute, RIKEN, and Genesis Research Institute). Honda has also developed a system that allows a person to control a robot through thoughts. Both companies continue to invest in innovation and science and engineering. The story of a bad economy and bad sales for a year or two is what you read in most newspapers. The story of why Toyota and Honda will be dominant companies 20 years from now is their superior management and focus on long term success instead of short term quarterly results.

The BSI-Toyota Collaboration Center, has succeeded in developing a system which utilizes one of the fastest technologies in the world, controlling a wheelchair using brain waves in as little as 125 milliseconds (one millisecond, or ms, is equal to 1/1000 seconds.

Plans are underway to utilize this technology in a wide range of applications centered on medicine and nursing care management. R&D under consideration includes increasing the number of commands given and developing more efficient dry electrodes. So far the research has centered on brain waves related to imaginary hand and foot control. However, through further measurement and analysis it is anticipated that this system may be applied to other types of brain waves generated by various mental states and emotions.

Related: Honda’s Robolegs Help People WalkReal-time control of wheelchairs with brain wavesToyota Winglet, Personal TransportationToyota RobotsMore on Non-Auto ToyotaHonda has Never had Layoffs and has been Profitable Every Year

Toyota Software Development for Partner Robots

Posted on February 15, 2009 1 Comment

Toyota Discusses Software Development for Partner Robots

Yamada: What was unique about the software development for the partner robots exhibited at Aichi Expo was the fact that Toyota entirely disposed of its assets from the past.

Toyota owned some software assets because it had been developing partner robots for some time before developing the robots for the exposition. But those assets were all one-offs. No one but the developers themselves could comprehend their architectures.

As Toyota was developing more than one partner robot for the exposition, the number of developers involved increased. Considering that we can never complete any development if we use the past assets that rely on an individual developer’s skill, we made everything, including the platform, from scratch again.

Toyota developed the platform focusing on promoting design review by visualizing the control logic. Therefore, the company thoroughly separated control sequences and algorithms. To be more specific, it used state transition diagrams.

Each algorithm is stored in a different block in a state transition diagram. With such diagrams, developers can easily comprehend the flow of the control and review the design even if they do not understand each algorithm. The company employed this method because each algorithm such as a bipedal walking algorithm is too complicated for anyone but their developers to understand it.

Related: Toyota Partner Robots (2006)Toyota Cultivating Engineering TalentToyota iUnit

How to Develop Products like Toyota

Posted on January 25, 2009 3 Comments

How to Develop Products like Toyota

Sobek also says Toyota tends to stay as flexible as possible until relatively late in the development stage. He cites as an example Toyota’s practice of leaving manufacturing tolerances to be set by die makers rather than by design engineers creating the prints. Die makers make die dimensions as close as practical to those in the CAD database, but have the flexibility to modify them so body parts fit together well. Manufacturing engineers then set tolerances around manufacturing capabilities.

“Test first, then design. First run simulations and understand where the boundaries of solutions lie. Once you understand the alternate spaces between competing choices, you narrow the options in what are called integrating events.”

Integrating events are an opportunity to eliminate weak opportunities. It is only after these events are complete that detailed design commences. “The point is that you don’t get to detailed design until everything works,” says Kennedy. “That is the reason Toyota focuses so intently up front on understanding trade-offs.”

This is very similar to agile software development practices. Though due to different processes, software versus car manufacture the two process are not identical.

Though Toyota is adept at developing products, it may be a mistake to adopt its practices wholesale, no matter how good they are. “Much of the lean community tries to crow-bar Toyota’s approach into their own very different business model,”

This is always true. Copying what others do does not work. You can learn from others by understanding the benefits of their process and then adapting the ideas to your organization.

Toyota has several tools that help its engineers organize the tasks at hand. One of the most well known is called the A3 document, named for the size of the paper its information is written on. An A3 holds a distillation of project goals and customer wants. During development, it can serve as a crib sheet for engineers as they set priorities and make trade-offs. “A3s enforce the plan-do-check- act methods of quality,” explains Kennedy. “The A3 becomes the basis for Toyota’s entire review process.”

On my management improvement blog I discuss the Toyota Production System often, you can follow those posts if you are interested.

Related: Toyota Engineering Development ProcessToyota Winglet, Personal Transportation12 stocks for 10 yearsToyota Robots

Toyota Operates High School in India

Posted on November 8, 2008 1 Comment

Toyota Eyes India Market, Builds School to Get Edge

Built on a rugged hillside in southern India that is populated by wildcats [see below] and monkeys, Toyota’s sprawling technical training school, which opened last year, gives about 180 junior-high-school graduates an education in everything from dismantling transmissions to Japanese group exercises.

Toyota wants to turn students like Satish Lakshman, the son of a poor farmer, into a skilled employee who can boost the auto maker’s fortunes in this key emerging market. “We are learning discipline, confidence and continuous improvement,” says Mr. Lakshman, an energetic 18-year-old.

At the foundation of its growth plan is the Toyota Technical Training Institute. India’s auto market is growing at such a fast pace that skilled workers are in short supply. Toyota says the school will enable the company to develop the productive, skilled employees it needs.

Toyota has taken a similar approach in China, where it has helped the government run a technical training center since 1990. In India, rival auto makers are following Toyota’s lead. In September, Honda announced plans to open a technical college. Other car makers have formed partnerships with India’s technical institutes to improve training.

The school teaches students practical skills such as welding, auto assembly and maintenance. It also gives the young recruits a smattering of classes in such subjects as math, English and Japanese as well as lessons in the company’s cherished principles of consensus building, continuous improvement and eliminating waste.

Toyota is willing to invest in the long term. A much better sign than a company that is willing to pay their executives salaries that top the wealth of kings. Toyota also believes in education: Idle Workers Busy at Toyota.

Related: Toyota Building Second Plant in IndiaEngineering Education in IndiaManufacturing Takes off in IndiaHigh School Students in USA, China and IndiaLargest Manufacturing Countries

Read more

59 MPG Toyota iQ Diesel Available in Europe

Posted on October 13, 2008 7 Comments

image of seating in the toyota iQ

59 MPG Toyota iQ On Sale In Europe, US Plans Unclear

With lower carbon dioxide emissions than the Prius — around 159 grams of CO2 emitted per mile by the 1.0 liter gas engine and 166 g/mile for the diesel version — not only does the iQ deliver on fuel economy, but its straight-up conventional engine is a pollution winner too.

At just about 9.8 feet long, 5.5 feet wide and 4.9 feet tall, Toyota certainly has pulled of a near engineering miracle with the amount of stuff they’ve crammed into this tiny vehicle. Toyota claims the iQ can fit 3 adults and 1 child “comfortably.”

Toyota expects to sell about 80,000 of them a year in Europe.

I own some Toyota stock (and bought a bit more recently) based on their excellent management and production system and the results they have achieved (so I pay attention to what they are doing – plus I own them because they do things I see as wise so it is a self reinforcing dynamic). Business week recently wrote about Ford’s 65 mpg Diesel Car the U.S. Can’t Have.

I owned Ford stock back when they were adopting Deming based management principles but when they dropped those to pursue short sighted goals and poor management practices I sold and bought Toyota (turned out to be a very wise decision – my mistake was holding Ford too long hoping they would realize their mistake).

Related: Toyota Engineering Development ProcessToyota Cultivating Engineering TalentToyota Winglet, Personal TransportationToyota iUnitToyota iQ media kit (lots of details)

Toyota Cultivating Engineering Talent

Posted on October 11, 2008 2 Comments

Toyota has a knack for cultivating engineering talent

Toyota now has more than 1,000 York Township employees dedicated to conducting engineering services on vehicles for the North American market. Early on in its expansion project, the Japanese automaker displayed a canny understanding of how to cultivate talent and acquire engineers fresh out of college.

Toyota established a two-year internship program for recent engineering graduates at schools like the University of Michigan, Michigan State University, Lawrence Technological University and the University of Wisconsin. At the end of the two-year period, the automaker and the employee reach a mutual decision about whether the employee should continue working there.

Bruce Brownlee, senior executive administrator for external affairs for the Toyota Planning Center at the Toyota Technical Center, has said the company generated a “large pipeline” for engineering talent by leveraging the internship program.

Related: Engineering InternshipsToyota Engineering Development ProcessToyota RobotsToyota k-12 Science GrantsToyota Production System (TPS) management blog posts

Toyota Engineering Development Process

Posted on September 22, 2008 8 Comments

Kenji Hiranabe talks about Toyota’s development process (webcast). Kenji shares a presentation he attended earlier this year by Nobuaki Katayama, a former Chief Engineer at Toyota, and the lessons he learned from him.

The webcast takes awhile to get going. If you are impatient you might want to start at the 6 minute mark. Some thoughts from the talk:

  • The Voice of the Customer is diffuse. A strong concept (for a project – new car for example) is very important to focus thought, listening to voice of the customer is important but must use strong concept to avoid losing focus (due to diffuse customer feedback).
  • Honest face to face communication is important. Bad news first – present bad news first [don’t try to hide bad news – my thoughts in brackets, John Hunter].
  • Everyone must think about cost reduction, many efforts add up to big impact [the importance of reducing waste everywhere].
  • benchmark, not to copy others, but to learn from what others do well.

The webcast includes a nice (though short) discussion of agile management in software development and lean manufacturing (the different situation of manufacturing versus software development). Kenji Hiranabe has also translated several agile and lean books into Japanese including Implementing Lean Software Development.

Related: Kenji Hiranabe’s blogMarissa Mayer Webcast on Google InnovationHonda EngineeringEngineering Innovation in Manufacturing and the Economy

Toyota Winglet – Personal Transportation

Posted on August 2, 2008 8 Comments

Winglet Personal Mobility Device from Toyota

Toyota has a long term vision. The population of Japan is aging rapidly. Toyota has invested in personal transportation and personal robotic assistance for quite some time. I must admit this new Winglet doesn’t seem like an incredible breakthrough to me (their earlier iUnit seems much better to me – though I am sure much more expensive too). The interest to me is in their continued focus on this market which I think is a smart move. The aging population worldwide (and others) will benefit greatly from improved personal mechanical assistance.

The Winglet is one of Toyota’s people-assisting Toyota Partner Robots. Designed to contribute to society by helping people enjoy a safe and fully mobile life, the Winglet is a compact next-generation everyday transport tool that offers advanced ease of use and expands the user’s range of mobility.

The Winglet consists of a body that houses an electric motor, two wheels and internal sensors that constantly monitor the user’s position and make adjustments in power to ensure stability. Meanwhile, a unique parallel link mechanism allows the rider to go forward, backward and turn simply by shifting body weight, making the vehicle safe and useful even in tight spaces or crowded environments.

Toyota plans various technical and consumer trials to gain feedback during the Winglet’s lead-up to practical use. Practical tests of its utility as a mobility tool are planned to begin in Autumn 2008 at Central Japan International Airport (Centrair) near Nagoya, and Laguna Gamagori, a seaside marine resort complex in Aichi Prefecture. Testing of its usefulness in crowded and other conditions, and how non-users react to the device, is to be carried out in 2009 at the Tressa Yokohama shopping complex in Yokohama City.

Toyota is pursuing sustainability in research and development, manufacturing and social contribution as part of its concept to realize “sustainability in three areas” and to help contribute to the health and comfort of future society. Toyota Partner Robot development is being carried out with this in mind and applies Toyota’s approach to monozukuri (“making things”), which includes its mobility, production and other technologies.

Toyota aims to realize the practical use of Toyota Partner Robots in the early 2010s.

On a personal note, I bought some more Toyota stock last week. The stock has declined a bit recently. Toyota is one of the companies in my 12 stocks for 10 years portfolio.

Related: Toyota Develops Personal Transport Assistance Robot ‘Winglet’No Excessive Senior Executive Pay at ToyotaMore on Non-Auto Toyota