Choosing Between Chemical Engineering and Bioengineering

Posted on February 17, 2021  Comments (0)

Chemical engineering and bioengineering, also called biomedical engineering, overlap in some areas because they both create new technology and innovations for the healthcare industry. However, the two disciplines are very different. Here is a comparison of the two careers to help you choose the one that would be best for you.

What Does a Chemical Engineer Do?

A chemical engineer uses science to find solutions to problems, such as manufacturing issues for a food company. They can also work for pharmaceutical, chemical, science, petroleum, coal, oil, gas, trade, manufacturing and other companies.

They usually work in a laboratory or office setting. Sometimes they have to work in an industrial or chemical plant. Some chemical engineers work in the field, such as a refinery. The daily tasks of a chemical engineer can vary, but they usually include research and testing. They may develop new chemicals products, or they may create and test equipment.

photo of a chemical engineering lab setup

Sometimes chemical engineers can solve important problems that affect different aspects of people’s lives. For example, Líney Árnadóttir is a chemical engineering associate professor who studies chemical processes on different surfaces to try to uncover how and why materials degrade.

Árnadóttir and other researchers used supercomputers to study chloride’s role in corrosion. Chemical engineers sometimes use technology, such as the supercomputers at the San Diego Supercomputer Center and the Texas Advanced Computing Center, to do their work and solve problems. By understanding how chloride affects materials like steel, the researchers can help companies, manufacturers and the environment deal with corrosion better.

What Is Bioengineering?

Bioengineering is a field that uses engineering to study and design biomedical technology and systems. A bioengineer usually works in healthcare. They frequently make new medical devices, equipment, software, computer systems and other products to help people.

Bioengineers can create new laboratory machines to diagnose medical problems or artificial organs to replace the ones in a person. It is possible for a bioengineer to find work in a laboratory, research center, manufacturing facility, hospital or university. Some bioengineers work for large companies and help them develop new products.

Every time you go to a doctor’s office or hospital you are seeing examples of bioengineering. When you need an MRI or CT scan, you are using technology built by bioengineers. If you need a hip replacement or a new knee, you are also benefiting from the designs created by bioengineers.

What Type of Qualifications Does Each Require?

In addition to studying engineering and chemistry, a chemical engineer must study math, biology and physics. As a student, you may have to study science topics like engineering computation or chemical engineering thermodynamics. A strong science and math background is important for becoming a chemical engineer. Many pursue a master’s degree after their bachelor’s degree.

A chemical engineer has to be a good problem solver. They have to look at a process or design and figure out how to make it work. They also have to fix it and figure out why it is not working when problems develop. Creativity is essential for this career.

A bioengineer must study engineering, biology and medical science. Additional topics studied by bioengineers include: genetics, computational biology and cell biology. Bioengineers will also must study math and other subjects during college. Many choose to pursue a master’s in biomedical engineering after earning their bachelor’s.

Read more

Creating Low-cost Construction Materials Using Recycled Plastic Waste

Posted on February 12, 2021  Comments (0)

Nzambi Matee is a materials engineer and head of Gjenge Makers (in Kenya), which produces sustainable low-cost construction materials made of recycled plastic waste and sand. For her work, Nzambi Matee was recently named a Young Champions of the Earth by the United Nations Environment Programme.

Building blocks for a greener Nairobi

Through trial and error, she and her team learned that some plastics bind together better than others. Her project was given a boost when Matee won a scholarship to attend a social entrepreneurship training programme in the United States of America. With her paver samples packed in her luggage, she used the material labs in the University of Colorado Boulder to further test and refine the ratios of sand to plastic.

It is wonderful to see young people using an understanding of engineering to find ways to improve the world. Taking waste plastic and creating usable products will help reduce pollution and create a better world. We need quite a bit of effort to deal with plastic waste, so I look forward to learning about many more ideas turned into practical solutions in the real world.

Related: Cleaning Up the Plastic Pollution in Our OceansPedal Powered Washing MachineProtecting Cows with Lion LightsDrone Deliveries to Hospitals in Rwanda