Posts about New York City

Evolution in New York City Wildlife

Evolution Right Under Our Noses by Carl Zimmer

White-footed mice, stranded on isolated urban islands, are evolving to adapt to urban stress. Fish in the Hudson have evolved to cope with poisons in the water. Native ants find refuge in the median strips on Broadway. And more familiar urban organisms, like bedbugs, rats and bacteria, also mutate and change in response to the pressures of the metropolis. In short, the process of evolution is responding to New York and other cities the way it has responded to countless environmental changes over the past few billion years. Life adapts.

Dr. Wirgin and his colleagues were intrigued to discover that the Hudson’s population of tomcod, a bottom-dwelling fish, turned out to be resistant to PCBs. “There was no effect on them at all,” Dr. Wirgin said, “and we wanted to know why.”

In March, he and his colleagues reported that almost all the tomcod in the Hudson share the same mutation in a gene called AHR2. PCBs must first bind to the protein encoded by AHR2 to cause damage. The Hudson River mutation makes it difficult for PCBs to grab onto the receptor, shielding the fish from the chemical’s harm.

The AHR2 mutation is entirely missing from tomcod that live in northern New England and Canada. A small percentage of tomcod in Long Island and Connecticut carry the mutation. Dr. Wirgin and his colleagues concluded that once PCBs entered the Hudson, the mutant gene spread quickly.

Carl Zimmer again does a good job of explaining science in an engaging way. It is interesting to learn about science and evolution in urban environments. Lots of life manages to survive the challenges of urban life and it is interesting to learn what scientists are finding about that life.

Related: Trying to Find Pest Solutions While Hoping Evolution Doesn’t Exist Doesn’t WorkMicrocosm by Carl ZimmerNew Yorkers Help Robot Find Its Way in the Big CityParasite RexBackyard Wildlife: Great Spreadwing Damselfly

Bronx High School of Nobel Prize for Physics Laureates

Bronx physics

Bronx Science owes its historic status to the fact that seven future Nobel-prize-winning physicists went through its doors – more than any other high school in the world and more than most countries have ever achieved. The school, which opened in 1938, was founded by the educator Morris Meister, who believed that if a school put bright students together, it would kindle ill-defined but valuable learning processes. The school seems to have proved him right: according to the Bronx laureates, their physics learning took place mainly outside the classroom.

Leon Cooper, who shared the 1972 prize for work on superconductivity, recalls physics lessons as boring, and was far more enchanted by his biology classes, which lured him to stay late after school designing and running experiments “until they threw me out”. Indeed, the school’s basic-physics textbook was written by a certain Charles E Dull, whose work, though widely used in US high schools, lived up to his name. The future particle physicist Melvin Schwartz, who shared the 1988 Nobel gong, once told me his classmates’ excited discussions – not his teacher – were what first awakened his interest in physics.

[today] the school’s most fearsome physics module – Advanced Placement Physics C – is tougher than most college-physics courses. Its dynamic instructor is Ghada Nehmeh, who was born in Lebanon and studied nuclear physics. Diminutive – smaller than most of her students – and scarf-clad, she jumps rapidly from lab table to lab table, helping piece together equipment and analyse results. Famous for being ruthlessly demanding, she tests the students on their first day by assigning them 40 calculus problems, due back the next day. “I’d never seen derivatives before,” says Kezi Cheng, a senior interested in theoretical physics. So Cheng did what most Bronx Science students do – she asked her classmates to give her a crash course on the subject. “They’re always willing to help.”

Sounds like a great place to go to school. The article also has some good anecdotes about how these students learned by seeking knowledge themselves not passively sitting and being lectured to.

Related: Science Education in the 21st CenturyFeynman “is a second Dirac, only this time human”The Nobel Prize in Physics 2009Letting Children Learn, Hole in the Wall Computers

Fixers Collective

Very cool. I like everything about this idea. I like the reuse (very environmentally friendly). I like the humanity and psychology of connecting with others. I like the tinkering/learning/fixing attitude and behavior. I like the very well done use of the internet to help fund such efforts. I like the exploration of the products and object we use. I like the rejection of a disposable attitude (just throw it away). I like the appropriate technology attitude. I made a donation, you can too (see what projects I am funding).

Related: Fund Teacher’s Science ProjectsScience Toys You Can Make With Your Kidscharity related posts

New Yorkers Help Robot Find Its Way in the Big City

Tweenbots by Kacie Kinzer

I wondered: could a human-like object traverse sidewalks and streets along with us, and in so doing, create a narrative about our relationship to space and our willingness to interact with what we find in it? More importantly, how could our actions be seen within a larger context of human connection that emerges from the complexity of the city itself? To answer these questions, I built robots.

Tweenbots are human-dependent robots that navigate the city with the help of pedestrians they encounter. Rolling at a constant speed, in a straight line, Tweenbots have a destination displayed on a flag, and rely on people they meet to read this flag and to aim them in the right direction to reach their goal.

The results were unexpected. Over the course of the following months, throughout numerous missions, the Tweenbots were successful in rolling from their start point to their far-away destination assisted only by strangers. Every time the robot got caught under a park bench, ground futilely against a curb, or became trapped in a pothole, some passerby would always rescue it and send it toward its goal. Never once was a Tweenbot lost or damaged. Often, people would ignore the instructions to aim the Tweenbot in the “right” direction, if that direction meant sending the robot into a perilous situation. One man turned the robot back in the direction from which it had just come, saying out loud to the Tweenbot, “You can’t go that way, it’s toward the road.”

Very cool, fun and interesting. Cute integration of technology, psychology and an inquisitive scientific mind.

Related: The Science of KissingOpen Source for LEGO MindstormsRobot Finds Lost Shoppers and Provides DirectionsMaking Robots from Trash

Buckminster Fuller at the Whitney

The Whitney in NYC has a Buckminster Fuller Exhibit through September 15, 2008.

One of the great American visionaries of the twentieth century, R. Buckminster Fuller (1895-1983) endeavored to see what he, a single individual, might do to benefit the largest segment of humanity while consuming the minimum of the earth’s resources. Doing “more with less” was Fuller’s credo.

Fuller’s innovative theories and designs addressed fields ranging from architecture, the visual arts, and literature to mathematics, engineering, and sustainability. He refused to treat these diverse spheres as specialized areas of investigation because it inhibited his ability to think intuitively, independently, and, in his words, “comprehensively.”
.
The results of more than five decades of Fuller’s integrated approach toward the design and technology of housing, transportation, cartography, and communication are displayed here, much of it for the first time. This exhibition offers a fresh look at Fuller’s life’s work for everyone who shares his sense of urgency about homelessness, poverty, diminishing natural resources, and the future of our planet.

Related: Buckminster Fuller, Everything I knowBuckminster Fuller: Dymaxion ManBuckminster Fuller $100,000 ChallengeMetropolitan Museum of Art photos

Science and the City: Science Barge

Science and the City is (among other things) an excellent podcast series from the New York Academy of Science. The latest podcast discusses the science barge project we posted about earlier. They discuss looking at commercially viable urban farms (on rooftops in NYC) and the establishing educational gardens at schools.

See the Curious Cat Science and Engineering Podcast Directory for some great resources for podcasts. Don’t miss the naked scientists from the BBC.

Related: Middle School EngineersFun primary school Science and EngineeringEducation Resources for Science and Engineering

The Science Barge

photo of the science barge in NYC
The Science Barge is a prototype, sustainable urban farm and environmental education center. It is the only fully functioning demonstration of renewable energy supporting sustainable food production in New York City. The Science Barge grows tomatoes, cucumbers, and lettuce with zero net carbon emissions, zero chemical pesticides, and zero runoff.

From May to October 2007, the Science Barge hosted over 3,000 schoolchildren from all five New York boroughs as well as surrounding counties as part of our environmental education program. In addition, over 6,000 adult visitors visited the facility along with press from around the world.

NY Sun Works: The Science Barge

Limited growing space means growing upwards, with stacked pots for strawberries, and vines that grow up to the ceiling and are then folded over to grow back down. Instead of using pesticides, pests are kept in check using ladybugs, parasitic wasps, and other predators as needed. Environmentally friendly substrates such as rice husks, coconut shells, and Earth Stone (recycled glass), are used to aerate the root systems for the plants.

Most fascinating of all was the Aquaponic system for providing nutrients to the plants using catfish. Nutrients from the plants and worms feed the catfish, who produce nitrogen-rich waste, which feeds the plants. Tilapia were originally used, but eventually replaced with catfish, which were better suited to the climate. The result of all this effort is a bounty of fresh fruits and vegetables given out to all the children who visit the barge.

Great stuff. Related: Science, Education and Communityother posts on environmental solutions

New York City Travel Photos

photo of stained glass window - The Cloisters, NYC
Photos from my trip to New York City last year are now online. Photos include: The Cloisters (part of the Metropolitan Museum of Art – though located far uptown) art and architecture of medieval Europe, the remodeled Museum of Modern Art, Rockefeller Center, Empire State Building and Flatiron Building.

Related: New York City Photo EssaysParis Travel PhotosPacific Northwest photosCurious Cat Travel Photos

Continue reading

  • Recent Comments:

    • Tour: They have some of the coolest people I’ve ever met and the robotics might surprise you (two of the...
    • nisha jain: great work. inspiring. thanks for sharing.
    • John Hunter: Google’s life sciences unit is releasing 20 million bacteria-infected mosquitoes in Fresno in...
    • Dave P: This is great! Hopefully now people will be getting the medicine that they need much quicker. Great...
    • Joe Fortune: It’s a crazy concept. I lived on a farm in Norway for a few months and the technology...
    • Gouri: This robot is looking cool, But i think this type of ideas need to be promoted by government, so...
    • Dạy kèm tiếng anh tại nhà: If this robot appeared in Vietnam then it is great, freeing labor for farmers....
    • Miner: Incredible. I missed this when this discovery was made. Proff that we have only identified a small...
  • Recent Trackbacks:

  • Links