Posts about Nanotechnology

Nanoparticles With Scorpion Venom Slow Cancer Spread

scorpion_venomIn a, chlorotoxin molecules, colored blue and green, attach themselves to a central nanoparticle. In b, each nanoprobe offers many chlorotoxin molecules that can simultaneously latch on to many MMP-2s, depicted here in yellow, which are thought to help tumor cells travel through the body. In c, over time nanoprobes draw more and more of the MMP-2 surface proteins into the cell, slowing the tumor’s spread. Image from the University of Washington.

University of Washington researchers found they could cut the spread of cancerous cells by 98 percent, compared to 45 percent for the scorpion venom alone, by combining nanoparticles with a scorpion venom compound already being investigated for treating brain cancer.

For more than a decade scientists have looked at using chlorotoxin, a small peptide isolated from scorpion venom, to target and treat cancer cells. Chlorotoxin binds to a surface protein overexpressed by many types of tumors, including brain cancer. Previous research by Miqin Zhang‘s group combined chlorotoxin with nanometer-scale particles of iron oxide, which fluoresce at that size, for both magnetic resonance and optical imaging.

Chlorotoxin also disrupts the spread of invasive tumors — specifically, it slows cell invasion, the ability of the cancerous cell to penetrate the protective matrix surrounding the cell and travel to a different area of the body to start a new cancer. The MMP-2 on the cell’s surface, which is the binding site for chlorotoxin, is hyperactive in highly invasive tumors such as brain cancer. Researchers believe MMP-2 helps the cancerous cell break through the protective matrix to invade new regions of the body. But when chlorotoxin binds to MMP-2, both get drawn into the cancerous cell.

Research showed that the cells containing nanoparticles plus chlorotoxin were unable to elongate, whereas cells containing only nanoparticles or only chlorotoxin could stretch out. This suggests that the nanoparticle-plus-chlorotoxin disabled the machinery on the cell’s surface that allows cells to change shape, yet another step required for a tumor cell to slip through the body.

So far most cancer research has combined nanoparticles either with chemotherapy that kills cancer cells, or therapy seeking to disrupt the genetic activity of a cancerous cell. This is the first time that nanoparticles have been combined with a therapy that physically stops cancer’s spread.

Full press release

Related: Using Bacteria to Carry Nanoparticles Into CellsGlobal Cancer Deaths to Double by 2030Nanoengineers Use Tiny Diamonds for Drug Delivery

MRI That Can See Bacteria, Virus and Proteins

IBM team boosts MRI resolution

The researchers demonstrated this imaging at a resolution 100 million times finer than current MRI. The advance could lead to important medical applications and is powerful enough to see bacteria, viruses and proteins, say the researchers.

The researchers said it offered the ability to study complex 3D structures at the “nano” scale. The step forward was made possible by a technique called magnetic resonance force microscopy (MRFM), which relies on detecting very small magnetic forces.

In addition to its high resolution, MRFM has the further advantage that it is chemically specific, can “see” below surfaces and, unlike electron microscopy, does not destroy delicate biological materials.

Now, the IBM-led team has dramatically boosted the sensitivity of MRFM and combined it with an advanced 3D image reconstruction technique. This allowed them to demonstrate, for the first time, MRI on biological objects at the nanometre scale.

That is very cool.

Related: IBM Research Creates Microscope With 100 Million Times Finer Resolution Than Current MRIMagnetic Resonance Force Microscopy (from Stanford)Nanotechnology Breakthroughs for Computer ChipsSelf-assembling Nanotechnology in Chip ManufacturingNanoparticles to Aid Brain Imaging

Harnessing Light to Drive Nanomachines

A team led by researchers has shown that the force of light indeed can be harnessed to drive machines – when the process is scaled to nano-proportions. Their work opens the door to a new class of semiconductor devices that are operated by the force of light. They envision a future where this process powers quantum information processing and sensing devices, as well as telecommunications that run at ultra-high speed and consume little power.

The energy of light has been harnessed and used in many ways. The “force” of light is different — it is a push or a pull action that causes something to move. “While the force of light is far too weak for us to feel in everyday life, we have found that it can be harnessed and used at the nanoscale,” said team leader Hong Tang, assistant professor at Yale. “Our work demonstrates the advantage of using nano-objects as ‘targets’ for the force of light – using devices that are a billion-billion times smaller than a space sail, and that match the size of today’s typical transistors.”

Full Press release

Related: Nanotube-producing Bacteria Show Manufacturing PromiseSelf-assembling Nanotechnology in Chip ManufacturingSlowing Down Light3 “Moore Generations” of Chips at OnceManipulating Carbon Nanotubesposts on university research

2008 Lemelson-MIT Prize for Invention

photo of Joseph Desimone

The Lemelson-MIT Prize awards $500,000 to mid-career inventors dedicated to improving our world through technological invention and innovation. Joseph M. DeSimone received the 2008 award.

His exposure to polymer science led him to pursue a Ph.D. in chemistry from Virginia Polytechnic Institute and State University in Blacksburg, Va. At the age of 25, DeSimone joined the University of North Carolina at Chapel Hill (UNC) as an assistant professor in chemistry and launched the university’s polymer program with his mentor Dr. Edward Samulski. He resides there today as the Chancellor’s Eminent Professor of Chemistry at UNC, in addition to serving as the William R. Kenan, Jr. Distinguished Professor of Chemical Engineering at North Carolina State University.

Among DeSimone’s notable inventions is an environmentally friendly manufacturing process that relies on supercritical carbon dioxide instead of water and bio-persistent surfactants (detergents) for the creation of fluoropolymers or high-performance plastics, such as Teflon®. More recently, he worked on a team to design a polymer-based, fully bioabsorbable, drug-eluting stent, which helps keep a blocked blood vessel open after a balloon-angioplasty and is absorbed by the body within 18 months.

DeSimone’s newest invention is PRINT® (Particle Replication in Non-wetting Templates) technology, used to manufacture nanocarriers in medicine. At present, DeSimone’s Lab is vested in a variety of projects that also extend beyond medicine, including potential applications for more efficient solar cells and morphable robots. In 2004, DeSimone co-founded Liquidia Technologies with a team of researchers from UNC to make the technology available in the market. Liquidia is using the PRINT technology to develop precisely engineered nanocarriers for highly targeted delivery of biological and small molecule therapeutics to treat cancer and other diseases. DeSimone’s proposed applications for cancer treatment with the PRINT platform was instrumental in UNC landing a grant of $24 million from the National Cancer Institute to establish the Carolina Center for Cancer Nanotechnology Excellence.

“You can do all the innovating you want in the laboratory, but if you can’t get it out of the university walls you do no one any good,” said DeSimone. He instills an entrepreneurial spirit in his students that focuses on the importance of commercializing technology and scientific inventions. One of DeSimone’s greatest accomplishments is his mentorship of more than 45 postdoctoral research associates, 52 Ph.D. candidates, six M.S. theses and 21 undergraduate researchers. Furthermore, he speaks to groups of high school students about the inventive process and encourages them to learn and explore areas that are less familiar to them to broaden their exposure to other disciplines.

A prolific inventor, DeSimone holds more than 115 issued patents with more than 70 new patent applications pending, and he has published more than 240 peer-reviewed scientific articles.

Related: Inspiring a New Generation of Inventors$500,000 for Innovation in Engineering EducationCollegiate Inventors Competitionposts on inventors

Self-assembling Nanofibers Heal Spinal Cords in Mice

Self-assembling Nanofibers Heal Spinal Cords by Prachi Patel-Predd

An engineered material that can be injected into damaged spinal cords could help prevent scars and encourage damaged nerve fibers to grow. The liquid material, developed by Northwestern University materials science professor Samuel Stupp, contains molecules that self-assemble into nanofibers, which act as a scaffold on which nerve fibers grow.

Stupp and his colleagues described in a recent paper in the Journal of Neuroscience that treatment with the material restores function to the hind legs of paralyzed mice.

The new work is the first test for the material to heal spinal cord injuries in animals. And Kessler says that it worked better than the researchers expected. The researchers stimulated a spinal cord injury in mice and injected the material 24 hours later. They found that the material reduced the size of scars and stimulated the growth of the nerve fibers through the scars. It promoted the growth of both types of nerve fibers that make up the spinal cord: motor fibers that carry signals from the brain to the limbs, and sensory fibers that carry sense signals to the brain. What is more, the material encouraged the nerve stem cells to mature into cells that create myelin–an insulating layer around nerve fibers that helps them to conduct signals more effectively.

Related: Using Bacteria to Carry Nanoparticles Into CellsMicro-robots to ’swim’ Through VeinsNanowired at Berkeley

Nanotechnology Breakthroughs for Computer Chips

Nano On Off Switch

Photo: Actual scanning tunneling microscopy images of the naphthalocyanine molecule in the “on” and the “off” state. More images

IBM Unveils Two Major Nanotechnology Breakthroughs as Building Blocks for Atomic Structures and Devices

IBM scientists have made major progress in probing a property called magnetic anisotropy in individual atoms. This fundamental measurement has important technological consequences because it determines an atom’s ability to store information. Previously, nobody had been able to measure the magnetic anisotropy of a single atom.

With further work it may be possible to build structures consisting of small clusters of atoms, or even individual atoms, that could reliably store magnetic information. Such a storage capability would enable nearly 30,000 feature length movies or the entire contents of YouTube – millions of videos estimated to be more than 1,000 trillion bits of data – to fit in a device the size of an iPod. Perhaps more importantly, the breakthrough could lead to new kinds of structures and devices that are so small they could be applied to entire new fields and disciplines beyond traditional computing.

In the second report, IBM researchers unveiled the first single-molecule switch that can operate flawlessly without disrupting the molecule’s outer frame — a significant step toward building computing elements at the molecular scale that are vastly smaller, faster and use less energy than today’s computer chips and memory devices.

In addition to switching within a single molecule, the researchers also demonstrated that atoms inside one molecule can be used to switch atoms in an adjacent molecule, representing a rudimentary logic element. This is made possible partly because the molecular framework is not disturbed.

Related: Self-assembling Nanotechnology in Chip ManufacturingMore Microchip BreakthroughsNanotechnology posts

Using Bacteria to Carry Nanoparticles Into Cells

bacteria nanopartical ferry

Bacteria ferry nanoparticles into cells for early diagnosis, treatment

Researchers at Purdue University have shown that common bacteria can deliver a valuable cargo of “smart nanoparticles” into a cell to precisely position sensors, drugs or DNA for the early diagnosis and treatment of various diseases. The approach represents a potential way to overcome hurdles in delivering cargo to the interiors of cells, where they could be used as an alterative technology for gene therapy, said Rashid Bashir, a researcher at Purdue’s Birck Nanotechnology Center.

The researchers attached nanoparticles to the outside of bacteria and linked DNA to the nanoparticles. Then the nanoparticle-laden bacteria transported the DNA to the nuclei of cells, causing the cells to produce a fluorescent protein that glowed green. The same method could be used to deliver drugs, genes or other cargo into cells.

“The released cargo is designed to be transported to different locations in the cells to carry out disease detection and treatment simultaneously,” said Bashir, a professor in the Weldon School of Biomedical Engineering and the School of Electrical and Computer Engineering. “Because the bacteria and nanoparticle material can be selected from many choices, this is a delivery system that can be tailored to the characteristics of the receiving cells. It can deliver diagnostic or therapeutic cargo effectively for a wide range of needs.”

Harmless strains of bacteria could be used as vehicles, harnessing bacteria’s natural ability to penetrate cells and their nuclei, Bashir said. “For gene therapy, a big obstacle has been finding ways to transport the therapeutic DNA molecule through the nuclear membrane and into the nucleus,” he said. “Only when it is in the nucleus can the DNA produce proteins that perform specific functions and correct genetic disease conditions.”
Continue reading

  • Recent Comments:

    • Akila: Most countries using drones for war activities.By reading this article i realized that we can use...
    • Lisa Smith: If making hyper loop is cost effective someone should have built it by now. I don’t think...
    • Kurt Barker: This was a great article. It is always great to read how modern technology can benefit the...
    • Coleman: Impressive! Great to see people taking initiative to differentiate their energy use – long...
    • Kevin Burke: Wow, some of the greatest ideas are also the simplest. I hope Mr Buchanan’s ideas are...
    • Phil Luther: Thanks for the information. I have personally been looking at different types of solar heating...
    • Jody Weissler: As the founder of a program that encourage the use of rel=”nofollow 221;>Japanese...
    • Auburn: I agree this water heater is super efficient but I think the nations coal plants are safe. Most...
  • Recent Trackbacks:

  • Links