Posts about innovation

Introduction Video on 3D Printing

3D printing is an amazing technology that opens up great opportunities for us to enjoy life. The future is great. It is exciting to see how quickly advances are being made in this area. I think the ability to print replacement parts is a huge benefit. And the creative uses people will put these printers too will be a joy to see.

Related: A Pen That Prints in 3D While You DrawOpen Source 3-D Printing (2007)Great 3D Printing Presentation by a kid (2011)3D Printing is Here (2009)A plane You Can Print (2006)

NASA Biocapsules Deliver Medical Interventions Based Upon What They Detect in the Body

Very cool innovation from NASA. The biocapsule monitors the environment (the body it is in) and responds with medical help. Basically it is acting very much like your body, which does exactly that: monitors and then responds based on what is found.

The Miraculous NASA Breakthrough That Could Save Millions of Lives

The Biocapsules aren’t one-shot deals. Each capsule could be capable of delivering many metred doses over a period of years. There is no “shelf-life” to the Biocapsules. They are extremely resilient, and there is currently no known enzyme that can break down their nanostructures. And because the nanostructures are inert, they are extremely well-tolerated by the body. The capsules’ porous natures allow medication to pass through their walls, but the nanostructures are strong enough to keep the cells in one place. Once all of the cells are expended, the Biocapsule stays in the body, stable and unnoticed, until it is eventually removed by a doctor back on Earth.

Dr. Loftus [NASA] thinks we could realistically see wildspread usage on Earth within 10 to 15 years.

The cells don’t get released from the capsule. The cells inside the capsule secrete therapeutic molecules (proteins, peptides), and these agents exit the capsule by diffusion across the capsule wall.

NASA plans to use the biocapsules in space, but they also have very promising uses on earth. They can monitor a diabetes patient and if insulin is needed, deliver it. No need for the person to remember, or give themselves a shot of insulin. The biocapsule act just like out bodies do, responding to needs without us consciously having to think about it. They can also be used to provide high dose chemotherapy directly to the tumor site (thus decreasing the side effects and increasing the dosage delivered to the target location. Biocapsules could also respond to severe allergic reaction and deliver epinephrine (which many people know have to carry with them to try and survive an attack).

It would be great if this were to have widespread use 15 years from now. Sadly, these innovations tend to take far longer to get into productive use than we would hope. But not always, so here is hoping this innovation from NASA gets into ourselves soon.

Related: Using Bacteria to Carry Nanoparticles Into CellsNanoparticles With Scorpion Venom Slow Cancer SpreadSelf-Assembling Cubes Could Deliver MedicineNanoengineers Use Tiny Diamonds for Drug Delivery

Footballs Providing Light to Those Without Electricity at Home

This is an update on our previous post: sOccket: Power Through Play. This year, Soccket, 3,000 balls are scheduled to be put into use around the world. The college students (all women, by the way) that came up with this idea (harnessing the kenetic energy created while kicking a football [soccer ball] around to power a batter to use for lighting) are continuing to test and develop the product.

That ball has to be able to survive dusty, wet and harsh conditions and continue to provide power. The new, production version of the football powers a water sterilizer, fan, and provides up to 24 hours of LED light. It also can’t be deflated (a side affect of a design that is able to survive the rough environments, I believe).

I love to see engineers focusing on providing solutions for the billions of people that need simple solutions. Creating the next iPhone innovations is also cool, but the impact of meeting the needs of those largely ignored today, is often even greater.

The sOccket inventors also have a talent for publicity, which is always useful for entrepreneurs.

Related: Water Pump Merry-go-RoundWater and Electricity for AllHigh School Team Developing Clean Water SolutionsSmokeless Stove Uses 80% Less Fuel

Amazing New Light Field Camera: Adjust Focus After You Take the Picture

The cool Lytro light field camera lets you adjust the focus after the picture is taken. Wow what a surprise the company is located in Mountain View, California. Oh wait, no that isn’t a surprise. Those of us in the USA should thank our lucky stars for having Silicon Valley in our country.

The Lytro will be available in early 2012 starting at $399 (a 8 GB model able to hold up to 350 images) and $499 for a $499 16 GB model able to hold 750 images.

The camera does take 3d images. That feature will be enabled via a software update after the initial release.

Related: Rare Saharan Cheetahs Photographed with Camera TrapAwesome Camera for Your CatCurious Cat Gadget BlogAmazon’s Android Tablet, the Kindle FireQubits Construction Toy

Fix it Goo

5 years of discovery and experimentation culminated in Sugru. It cures at room tempature, is self-adhesive, is flexible, waterproof and dish-washer-proof. Another post on home fixing.

Related: Teenage Engineer’s Company Launches Safety StairEngineers Should Follow Their HeartsTest it Out, Experiment by They Might Be GiantsBionic Vision

Real Time Hologram Projection Getting Closer

A team led by the University of Arizona professor of Materials Science and Engineering Nasser Peyghambarian has developed a new type of holographic telepresence that allows the projection of a three-dimensional moving image without the need for special eyewear such as 3D glasses or other auxiliary devices.

“Holographic telepresence means we can record a three-dimensional image in one location and show it in another location, in real-time, anywhere in the world,” said Peyghambarian, who led the research effort.

“Holographic stereography has been capable of providing excellent resolution and depth reproduction on large-scale 3D static images,” the authors wrote, “but has been missing dynamic updating capability until now.”

The prototype device uses a 10-inch screen, but Peyghambarian’s group is already successfully testing a much larger version with a 17-inch screen. The image is recorded using an array of regular cameras, each of which views the object from a different perspective. The more cameras that are used, the more refined the final holographic presentation will appear.

Related: Holographic Television on the Way3D Printing is HereVideo GogglesJetsone Jetplane Flys Over the English Channel
Continue reading

Google’s Self Driving Car

Google thinks big. Google thinks like engineers. Google is willing to spend money taking on problems that other companies don’t. They have been developing a car that can drive itself. They see a huge amount of waste (drivers lives and drivers time) and seek a solution.

Larry and Sergey founded Google because they wanted to help solve really big problems using technology. And one of the big problems we’re working on today is car safety and efficiency. Our goal is to help prevent traffic accidents, free up people’s time and reduce carbon emissions by fundamentally changing car use.

So we have developed technology for cars that can drive themselves. Our automated cars, manned by trained operators, just drove from our Mountain View campus to our Santa Monica office and on to Hollywood Boulevard. They’ve driven down Lombard Street, crossed the Golden Gate bridge, navigated the Pacific Coast Highway, and even made it all the way around Lake Tahoe. All in all, our self-driving cars have logged over 140,000 miles. We think this is a first in robotics research.

Our automated cars use video cameras, radar sensors and a laser range finder to “see” other traffic, as well as detailed maps (which we collect using manually driven vehicles) to navigate the road ahead. This is all made possible by Google’s data centers, which can process the enormous amounts of information gathered by our cars when mapping their terrain.

To develop this technology, we gathered some of the very best engineers from the DARPA Challenges, a series of autonomous vehicle races organized by the U.S. Government. Chris Urmson was the technical team leader of the CMU team that won the 2007 Urban Challenge. Mike Montemerlo was the software lead for the Stanford team that won the 2005 Grand Challenge. Also on the team is Anthony Levandowski, who built the world’s first autonomous motorcycle that participated in a DARPA Grand Challenge, and who also built a modified Prius that delivered pizza without a person inside.

Related: Larry Page and Sergey Brin WebcastEnergy Secretary Steve Chu and Google CEO Eric Schmidt Speak On Funding Science ResearchGoogle’s Ten Golden RulesCMU Wins $2 million in DARPA Auto Race

sOccket: Power Through Play

In a fun example of appropriate technology and innovation 4 college students have created a football (soccer ball) that is charged as you play with it. The ball uses an inductive coil mechanism to generate energy, thanks in part to a novel Engineering Sciences course, Idea Translation. They are beta testing the ball in Africa: the current prototypes can provide light 3 hours of LED light after less than 10 minutes of play. Jessica Matthews ’10, Jessica Lin ’09, Hemali Thakkara ’11 and Julia Silverman ’10 (see photo) created the eco-friendly ball when they all were undergraduates at Harvard College.

photo of sOccket creators: Jessica Matthews, Jessica Lin, Hemali Thakkara and Julia Silverman

sOccket creators: Jessica Matthews, Jessica Lin, Hemali Thakkara and Julia Silverman

They received funding from: Harvard Institute for Global Health and the Clinton Global Initiative University. The

sOccket won the Popular Mechanics Breakthrough Award, which recognizes the innovators and products poised to change the world. A future model could be used to charge a cell phone.

From Take part: approximately 1.5 billion people worldwide use kerosene to light their homes. “Not only is kerosene expensive, but its flames are dangerous and the smoke poses serious health risks,” says Lin. Respiratory infections account for the largest percentage of childhood deaths in developing nations—more than AIDS and malaria.

Related: High school team presenting a project they completed to create a solution to provide clean waterWater Pump Merry-go-RoundEngineering a Better World: Bike Corn-ShellerGreen Technology Innovation by College Engineering Students

Watch a June 2010 interview on the ball:
Continue reading

Letting Children Learn – Hole in the Wall Computers

The hole in the wall experiments are exactly the kind of thing I love to lean about. I wrote about them in 2006, what kids can learn.

Research finding from the Hole in the Wall foundation:

Over the 4 year research phase (2000-2004), HiWEL has extensively studied the impact of Learning Stations on children. Hole-in-the-Wall Learning Stations were installed in diverse settings, the impact of interventions was monitored and data was continually gathered, analyzed and interpreted. Rigorous assessments were conducted to measure academic achievement, behaviour, personality profile, computer literacy and correlations with socio-economic indicators.

The sociometric survey found:

  • Self-organizing groups of children who organize themselves into Leaders (experts), Connectors and Novice groups.
  • Leaders and Connectors identified seem to display an ability to connect with and teach other users.
  • Key leaders on receiving targeted intervention, play a key role in bringing about a “multiplier effect in learning” within the community.
  • Often girls are seen to take on the role of Connector, who initiates younger children and siblings (usually novices with little or no exposure to computers) and connects them to the leaders in the group

I believe traditional education is helpful. I believe people are “wired” to learn. They want to learn. We need to create environments that let them learn. We need to avoid crushing the desire to learn (stop de-motivating people).

If you want to get right to talking about the hole in the wall experiments, skip to the 8 minute mark.

Related: Providing Computer to Remote Students in NepalTeaching Through TinkeringKids Need Adventurous PlayScience Toys You Can Make With Your Kids

New Server Uses 75% Less Power and Space

SeaMicro drops an atom bomb on the server industry

[SeaMicro] has created a server with 512 Intel Atom chips that gets supercomputer performance but uses 75 percent less power and space than current servers.

Today’s servers are so inefficient when it comes to being properly utilized,” Feldman said. “This misalignment between the server and the work load is the root of the power consumption problem.”

So SeaMicro guessed that servers could benefit instead by using lots of smaller processors, and it got lucky when Intel started promoting its low-power, low-cost Atom chip for netbooks. That lowered power consumption, since Atom processors deliver three times the performance per watt versus Intel’s server chips.

But SeaMicro also attacked the power consumption in the rest of the system, which accounts for about two thirds of the power consumed by a server.

it applied the concept of virtualization to the inside of a server. Feldman designed custom chips that could take the tasks that were handled by everything beyond the Intel microprocessor and its chip set. The custom chips virtualize all of those other components so that it finds the resource when it’s needed. It essentially tricks the microprocessor into thinking that the rest of the system is there when it needs it.

SeaMicro virtualized a lot of functions that took up a lot of space inside each server in a rack. It also did the same with functions such as storage, networking, server management and load balancing. Full told, SeaMicro eliminates 90 percent of the components from a system board. SeaMicro calls this CPU/IO virtualization. With it, SeaMicro shrinks the size of the system board from a pizza box to the size of a credit card.

This advance is coming just in time. Google said recently that if current power trends continue, the cost of energy consumed by a server during its three-year life span could surpass the initial purchase cost for the hardware. The Environmental Protection Agency reports that volume servers consume more than 1 percent of the total electricity in the US—representing billions of dollars in wasted operating expense each year.

Related: Google Server Hardware DesignData Center Energy NeedsGoogle Uses Only Outside Air to Cool Data Center in Belgium

Google Prediction API

This looks very cool.

The Prediction API enables access to Google’s machine learning algorithms to analyze your historic data and predict likely future outcomes. Upload your data to Google Storage for Developers, then use the Prediction API to make real-time decisions in your applications. The Prediction API implements supervised learning algorithms as a RESTful web service to let you leverage patterns in your data, providing more relevant information to your users. Run your predictions on Google’s infrastructure and scale effortlessly as your data grows in size and complexity.

Accessible from many platforms: Google App Engine, Apps Script (Google Spreadsheets), web & desktop apps, and command line.

The Prediction API supports CSV formatted training data, up to 100M in size. Numeric or unstructured text can be sent as input features, and discrete categories (up to a few hundred different ones) can be provided as output labels.

Uses:
Language identification
Customer sentiment analysis
Product recommendations & upsell opportunities
Diagnostics
Document and email classification

Related: The Second 5,000 Days of the WebRobot Independently Applies the Scientific MethodControlled Experiments for Software SolutionsStatistical Learning as the Ultimate Agile Development Tool by Peter Norvig

  • Recent Comments:

    • nisha jain: great work. inspiring. thanks for sharing.
    • John Hunter: Google’s life sciences unit is releasing 20 million bacteria-infected mosquitoes in Fresno in...
    • Dave P: This is great! Hopefully now people will be getting the medicine that they need much quicker. Great...
    • Joe Fortune: It’s a crazy concept. I lived on a farm in Norway for a few months and the technology...
    • Gouri: This robot is looking cool, But i think this type of ideas need to be promoted by government, so...
    • Dạy kèm tiếng anh tại nhà: If this robot appeared in Vietnam then it is great, freeing labor for farmers....
    • Miner: Incredible. I missed this when this discovery was made. Proff that we have only identified a small...
    • Linda Peters: If you just pay attention to the science and make wise decisions with an understanding of...
  • Recent Trackbacks:

  • Links