Posts about government

Career Prospect for Engineers Continues to Look Positive

As I have written previously the career prospects for engineers are bright around the globe. Many countries realize the importance of engineering and have taken steps to compete as a center of excellence for engineering. It is a smart economic policy. Ironically, the USA, that did such a great job at this in the 1960’s and 1970’s, has been falling down in this regard. A significant reason for this is the USA can only fund so many things and a broken health care system, military complex, bailouts to bankers (trust fund babies and others) cost a lot of money. You chose what to fund, and those are taking much of the available USA funds. There are also non-economic reasons, such as the turn in the last decade in the USA to make the barriers for foreigner engineers (and others) to go through to go to school, visit and stay in the USA have all increased dramatically.

Back to the prospects for engineers: their are shortages of good engineers all over (and the future projections don’t show any reason to believe this will change). Germany Faces a Shortage of Engineers:

In June, the Association of German Engineers (VDI) reported that there were 76 400 vacant engineering jobs—an all-time high.

Policymakers in Berlin have responded to the shortage of skilled workers with a number of measures, including changes in immigration rules that allow German companies to hire engineers from other countries, including those outside of the European Union. Among them: The annual salary that companies must pay foreigners has been lowered from 60,000 Euro (US $95,000) to 40,000 Euro, which is roughly the starting salary of an engineering graduate in Germany…

To make it easy for engineers to move around Europe, engineering associations and other groups across Europe are working with the European Commission (the executive arm of the European Union) to launch the new Engineering Card. The card, which German engineers can apply for now and other countries are planning to launch, provides standardized information about the engineer’s qualifications and skills for greater transparency.

“We don’t expect many engineers will come, because among other reasons, there is a shortage of engineers across Europe,”

Related: Engineering Again Dominates The Highest Paying College Degree ProgramsS&P 500 CEO’s: Engineers Stay at the TopChina’s Technology Savvy LeadershipEngineers: Future ProspectsEconomic Strength Through Technology Leadership

Continue reading

Google Invests $168 million in Largest Solar Tower Power Project

Google is investing in a new solar tower power project located in California that will generate 392 gross MW of clean, solar energy. That’s the equivalent of taking more than 90,000 cars off the road. Google has now invested $250 million in clean energy.

Investing in the world’s largest solar power tower plant

works by using a field of mirrors, called heliostats, to concentrate the sun’s rays onto a solar receiver on top of a tower. The solar receiver generates steam, which then spins a traditional turbine and generator to make electricity. Power towers are very efficient because all those mirrors focus a tremendous amount of solar energy onto a small area to produce steam at high pressure and temperature (up to 1000 degrees F).

Several large solar projects are in the works in the sunny Southwest (and around the globe), but Ivanpah will be the first solar power tower system of this scale. The Ivanpah Power Tower will be approximately 450 feet tall and will use 173,000 heliostats, each with two mirrors.

The Department of energy is also providing financing for this project. The project is 10 times larger than the largest solar photovoltaic project in California.

Related: Google Investing Huge Sums in Renewable Energy and is HiringGoogle.org Invests $10 million in Geothermal EnergyGoogle’s Energy InterestsMolten Salt Solar Reactor Approved by CaliforniaSolar Tower Power GenerationFinding Huge Sources of Energy Without Increasing Carbon Dioxide Output

Changing Life as We Know It

Update: Independent researchers find no evidence for arsenic life in Mono Lake

NASA has made a discovery that changes our understanding of the very makeup of life itself on earth. I think my favorite scientific discipline name is astrobiology. NASA pursues a great deal of this research not just out in space but also looking at earth based life. Their astrobiology research has changed the fundamental knowledge about what comprises all known life on Earth.

photo of Felisa Wolfe-Simon

Felisa Wolfe-Simon processing mud from Mono Lake to inoculate media to grow microbes on arsenic.

Carbon, hydrogen, nitrogen, oxygen, phosphorus and sulfur are the six basic building blocks of all known forms of life on Earth. Phosphorus is part of the chemical backbone of DNA and RNA, the structures that carry genetic instructions for life, and is considered an essential element for all living cells.

Phosphorus is a central component of the energy-carrying molecule in all cells (adenosine triphosphate) and also the phospholipids that form all cell membranes. Arsenic, which is chemically similar to phosphorus, is poisonous for most life on Earth. Arsenic disrupts metabolic pathways because chemically it behaves similarly to phosphate.

Researchers conducting tests in the harsh, but beautiful (see photo), environment of Mono Lake in California have discovered the first known microorganism on Earth able to thrive and reproduce using the toxic chemical arsenic. The microorganism substitutes arsenic for phosphorus in its cell components.

“The definition of life has just expanded,” said Ed Weiler, NASA’s associate administrator for the Science Mission Directorate. “As we pursue our efforts to seek signs of life in the solar system, we have to think more broadly, more diversely and consider life as we do not know it.” This finding of an alternative biochemistry makeup will alter biology textbooks and expand the scope of the search for life beyond Earth.

In science such huge breakthroughs are not just excepted without debate, however, which is wise.

Thriving on Arsenic:

In other words, every experiment Wolfe-Simon performed pointed to the same conclusion: GFAJ-1 can substitute arsenic for phosphorus in its DNA. “I really have no idea what another explanation would be,” Wolfe-Simon says.

But Steven Benner, a distinguished fellow at the Foundation for Applied Molecular Evolution in Gainesville, FL, remains skeptical. If you “replace all the phosphates by arsenates,” in the backbone of DNA, he says, “every bond in that chain is going to hydrolyze [react with water and fall apart] with a half-life on the order of minutes, say 10 minutes.” So “if there is an arsenate equivalent of DNA in that bug, it has to be seriously stabilized” by some as-yet-unknown mechanism.

It is sure a great story if it is true though. Other scientists will examine more data and confirm or disprove the claims.

“We know that some microbes can breathe arsenic, but what we’ve found is a microbe doing something new — building parts of itself out of arsenic,” said Felisa Wolfe-Simon, a NASA Astrobiology Research Fellow in residence at the U.S. Geological Survey in Menlo Park, Calif., and the research team’s lead scientist. “If something here on Earth can do something so unexpected, what else can life do that we haven’t seen yet?”
Continue reading

Antibiotics Breed Superbugs Faster Than Expected

We continue to endanger ourselves by using antibiotics inappropriately. This is one of many things that happen when the public at large is ignorant about science and ignores scientific evidence. I don’t believe people want to put other people’s lives in danger. But our behavior in the face of the evidence has us doing just that. I believe because we don’t value science rather than because we don’t care about putting others (and ourselves) in danger. Antibiotics Breed Superbugs Faster Than Expected

Bacteria don’t just develop resistance to one drug at a time, but to many — and at accelerated rates. That’s because antibiotics boost bacterial production of free-radical oxygen molecules that damage bacterial DNA. Repairs to the DNA cause widespread mutations, giving bacteria more chances to randomly acquire drug-resistant traits.

Drug resistance is a serious public health concern. According to the federal Centers for Disease Control and Prevention, 70 percent of 1.7 million infections acquired in hospitals every year are resistant to at least one drug. Those infections annually kill 99,000 Americans — more than double the number that die in car crashes.

Drugs that once destroyed almost any bacteria now kill only a few, or don’t work at all. In the case of some drugs, like Cipro, the decline is dramatic: Where in 1999 it worked against 95 percent of E. coli, it treated only 60 percent by 2006. Against lung infection-causing Acinobacter, its effectiveness fell by 70 percent in just four years.

Though drug resistance is ultimately inevitable, conventional wisdom holds that antibiotics consumed at suboptimum doses hasten the process. Bugs that would have succumbed to a larger dose live to multiply, pushing the strain as a whole closer to resistance. That happens when a prescription goes unfinished, or when antibiotics used on farms enter food and water at low levels.

Of the 35 million pounds of antibiotics consumed annually in the United States, 80 percent goes to farm animals. Much of it is used to treat diseases spread by industrial husbandry practices, or simply to accelerate growth. As a result, farms have become giant petri dishes for superbugs, especially multidrug-resistant Staphylococcus aureus, or MRSA, which kills 20,000 Americans every year – more than AIDS.

Alarming cases of farm-based MRSA and other diseases led to a proposed Congressional law restricting the use of agricultural antibiotics. That bill, supported by the American Medical Association and American Public Health Association, is opposed by farm lobbyists and remains stuck in committee.

Related: Antibiotics Too Often Prescribed for Sinus WoesOveruse of AntibioticsDisrupting the Replication of BacteriaWaste Treatment Plants Result in Super BacteriaBacteria Can Transfer Genes to Other Bacteria

Presidential Science Teaching and Mentoring Awards

Related: President Obama Speaks on Getting Students Excited About Science and EngineeringPresidential Awards for Excellence in Science, Mathematics and Engineering MentoringFund Teacher’s Science Projects$12.5 Million from NSF For Educating High School Engineering Teachers

Remarks by President Obama on the “Educate to Innovate” Campaign and Science Teaching and Mentoring Awards, January 6, 2010

To all the teachers who are here, as President, I am just thrilled to welcome you, teachers and mentors, to the White House, because I believe so strongly in the work that you do. And as I mentioned to some of you, because I’ve got two girls upstairs with math tests coming up, I figure that a little extra help from the best of the best couldn’t hurt. So you’re going to have assignments after this. (Laughter.) These awards were not free. (Laughter.)

photo of President Obama with science teachers at the White HousePresident Barack Obama with Presidential Awards for Excellence in Mathematics and Science Teaching winners in the State Dining of the White House January 6, 2010. (Official White House photo by Chuck Kennedy)

We are here today to honor teachers and mentors like Barb who are upholding their responsibility not just to the young people who they teach but to our country by inspiring and educating a new generation in math and science. But we’re also here because this responsibility can’t be theirs alone. All of us have a role to play in building an education system that is worthy of our children and ready to help us seize the opportunities and meet the challenges of the 21st century.

Whether it’s improving our health or harnessing clean energy, protecting our security or succeeding in the global economy, our future depends on reaffirming America’s role as the world’s engine of scientific discovery and technological innovation. And that leadership tomorrow depends on how we educate our students today, especially in math, science, technology, and engineering.

But despite the importance of education in these subjects, we have to admit we are right now being outpaced by our competitors. One assessment shows American 15-year-olds now ranked 21st in science and 25th in math when compared to their peers around the world. Think about that — 21st and 25th. That’s not acceptable. And year after year the gap between the number of teachers we have and the number of teachers we need in these areas is widening. The shortfall is projected to climb past a quarter of a million teachers in the next five years — and that gap is most pronounced in predominately poor and minority schools.

And meanwhile, other nations are stepping up — a fact that was plain to see when I visited Asia at the end of last year. The President of South Korea and I were having lunch, and I asked him, what’s the biggest education challenge that you have? He told me his biggest challenge in education wasn’t budget holes, it wasn’t crumbling schools — it was that the parents were too demanding. (Laughter.) He’s had to import thousands of foreign teachers because parents insisted on English language training in elementary school. The mayor of Shanghai, China — a city of over 20 million people — told me that even in such a large city, they had no problem recruiting teachers in whatever subject, but particularly math and science, because teaching is revered and the pay scales are comparable to professions like doctors.
Continue reading

Unless We Take Decisive Action, Climate Change Will Ravage Our Planet

Lake McDonald, Glacier National Park photo by John Hunterphoto by John Hunter at Glacier National Park.

Tomorrow 56 newspapers, in 45 countries, are taking the unprecedented step of publishing the same editorial. The editorial will appear in 20 languages, as the United Nations Climate Change Conference is set to begin in Copenhagen.

Unless we combine to take decisive action, climate change will ravage our planet, and with it our prosperity and security. The dangers have been becoming apparent for a generation. Now the facts have started to speak: 11 of the past 14 years have been the warmest on record, the Arctic ice-cap is melting and last year’s inflamed oil and food prices provide a foretaste of future havoc. In scientific journals the question is no longer whether humans are to blame, but how little time we have got left to limit the damage. Yet so far the world’s response has been feeble and half-hearted.

Climate change has been caused over centuries, has consequences that will endure for all time and our prospects of taming it will be determined in the next 14 days. We call on the representatives of the 192 countries gathered in Copenhagen not to hesitate, not to fall into dispute, not to blame each other but to seize opportunity from the greatest modern failure of politics. This should not be a fight between the rich world and the poor world, or between east and west. Climate change affects everyone, and must be solved by everyone.

The science is complex but the facts are clear. The world needs to take steps to limit temperature rises to 2C, an aim that will require global emissions to peak and begin falling within the next 5-10 years.

Few believe that Copenhagen can any longer produce a fully polished treaty; real progress towards one could only begin with the arrival of President Obama in the White House and the reversal of years of US obstructionism. Even now the world finds itself at the mercy of American domestic politics, for the president cannot fully commit to the action required until the US Congress has done so.

the rich world is responsible for most of the accumulated carbon in the atmosphere – three-quarters of all carbon dioxide emitted since 1850. It must now take a lead, and every developed country must commit to deep cuts which will reduce their emissions within a decade to very substantially less than their 1990 level.

The transformation will be costly, but many times less than the bill for bailing out global finance — and far less costly than the consequences of doing nothing.

Many of us, particularly in the developed world, will have to change our lifestyles. The era of flights that cost less than the taxi ride to the airport is drawing to a close. We will have to shop, eat and travel more intelligently. We will have to pay more for our energy, and use less of it.

Kicking our carbon habit within a few short decades will require a feat of engineering and innovation to match anything in our history. But whereas putting a man on the moon or splitting the atom were born of conflict and competition, the coming carbon race must be driven by a collaborative effort to achieve collective salvation.

The politicians in Copenhagen have the power to shape history’s judgment on this generation: one that saw a challenge and rose to it, or one so stupid that we saw calamity coming but did nothing to avert it. We implore them to make the right choice.

Most of the newspapers have taken the unusual step of featuring the editorial on their front page. Even with the overwhelming evidence and tremendous consequences I don’t expect politicians to make the right decisions. We know full well what the choices are. We just decide to avoid the unpleasant choices. To bad so many that don’t get to choose are going to suffer. The politicians will be weak. They will play to those that pay them money. They will delay taking important steps now. We have chosen to elect non-leaders for quite some time. We can’t really expect them to act with courage, vision, wisdom and leadership given who we elect. The politicians are responsible for their failing but we are more responsible for electing them. Some politicians, even now, do possess fine qualities but not nearly enough. Maybe I will be proven wrong, but I doubt it.

Related: What’s Up With the Weather?Arctic System on Trajectory to New, Seasonally Ice-Free StateScientists Denounce Global Warming Report EditsDeforestation and Global WarmingMIT’s Energy ‘Manhattan Project’Global Installed Wind Power Now Over 1.5% of Global Electricity DemandBigger Impact: 15 to 18 mpg or 50 to 100 mpg?Solar Thermal in Desert, to Beat Coal by 202076 Nobel Laureates in Science Endorse Obama

Feynman “is a second Dirac, only this time human”

Oppenheimer recommendation of Feynman, page 1

Great quotes from Oppenheimer’s recommendation of Richard Feynman

“He is by all odds the most brilliant young physicist here, and everyone knows this. He is a man of thoroughly engaging character and personality, extremely clear, extremely normal in all respects, and an excellent teacher with a warm feeling for physics in all its aspects. He has the best possible relations both with the theoretical people of whom he is one, and with the experimental people with whom he works in very close harmony.”

Bethe has said that he would rather lose any two other men than Feynman from this present job, and Wigner said, ‘He is a second Dirac, only this time human.”

Oppenheimer recommendation of Feynman, page 2

Images of letter from Oppenheimer to the University of California – Berkeley Recommending Richard Feynman for a position, November 4, 1943 (from Big Science at Berkeley).

via: He is a second Dirac, only this time human.

Related: Vega Science Lectures: Feynman and MoreThe Feynman Lectures on Physics by Richard P. Feynman and Robert B. Leighton and Matthew Sands – posts on physics

President Obama Speaks on Getting Students Excited About Science and Engineering

The President announces the “Educate to Innovate” initiative, a campaign to get students excited about pursuing careers in science, technology, engineering and mathematics. Quotes from President Obama from his speech – (see webcast above):

“As President, I believe that robotics can inspire young people to pursue science and engineering.”

“Now the hard truth is that for decades we’ve been losing ground. One assessment shows American 15-year-olds now rank 21st in science and 25th in math when compared to their peers around the world.”

“And today, I’m announcing that we’re going to have an annual science fair at the White House with the winners of national competitions in science and technology. If you win the NCAA championship, you come to the White House. Well, if you’re a young person and you’ve produced the best experiment or design, the best hardware or software, you ought to be recognized for that achievement, too. Scientists and engineers ought to stand side by side with athletes and entertainers as role models, and here at the White House we’re going to lead by example. We’re going to show young people how cool science can be.”

“improving education in math and science is about producing engineers and researchers and scientists and innovators who are going to help transform our economy and our lives for the better.”

Related: 2008 Intel Science Talent SearchReport on K-12 Science Education in USAFun k-12 Science and Engineering LearningScience Education in the 21st CenturyHigh School Inventor Teams @ MITEngineering Education Program for k-1276 Nobel Laureates in Science Endorse ObamaLego Learning

Energy Secretary Steve Chu Speaks On Funding Science Research

Energy Secretary Steve Chu (and Nobel Laureate) speaks with Google CEO Eric Schmidt about science research. One of the things Steve Chu is doing is funding high risk experiments that have great potential. This is something that is often said should be done but then people resort to safe investments in research. Taking these risks is a very good idea.

This is another example the remarkable way Google operates. The CEO actually understands science and the public good. Google also provides a huge amount of great material online in the form of webcasts of those speaking at Google. Google behaves like a company run by engineers. Other companies have engineers in positions of power but behave like companies run by any MBAs (whether they are lawyers, accountants, marketers or engineers).

Related: President’s Council of Advisors on Science and TechnologyScientists and Engineers in CongressEric Schmidt on Google, Education and EconomicsLarry Page on How to Change the WorldDiplomacy and Science ResearchGoogle Investing Huge Sums in Renewable Energy and is Hiring

Neil Degrasse Tyson: Scientifically Literate See a Different World

From the interview of Neil Degrasse Tyson from 3 July 2009.

“If you are scientifically literate the world looks very different to you. Its not just a lot of mysterious things happening. There is a lot we understand out there. And that understanding empowers you to, first, not be taken advantage of by others who do understand it. And second there are issues that confront society that have science as their foundation. If you are scientifically illiterate, in a way, you are disenfranchising yourself from the democratic process, and you don’t even know it.”

I agree, and, as I have said before, when a society allows a scientific illiteracy to continue then the potential for abuse by those that manipulate those that are scientifically illiterate leaves the society vulnerable to making very bad choices.

Related: Nearly Half of Adults in the USA Don’t Know How Long it Takes the Earth to Circle the Sunposts on scientific literacyEvolution, Methane, Jobs, Food and MoreAstronaut self portraitCosmology Questions AnsweredSarah, aged 3, Learns About Soap

President’s Council of Advisors on Science and Technology

Today, during remarks at the National Academy of Sciences, President Barack Obama announced the President’s Council of Advisors on Science and Technology (PCAST).

PCAST is an advisory group of the nation’s leading scientists and engineers who will advise the President and Vice President and formulate policy in the many areas where understanding of science, technology, and innovation is key to strengthening our economy and forming policy that works for the American people.

President Barack Obama said, “This council represents leaders from many scientific disciplines who will bring a diversity of experience and views. I will charge PCAST with advising me about national strategies to nurture and sustain a culture of scientific innovation.”

PCAST will be co-chaired by John Holdren, Assistant to the President for Science and Technology and Director of the White House Office of Science and Technology Policy; Eric Lander, Director of the Broad Institute of MIT and Harvard and one of the principal leaders of the Human Genome Project; and Harold Varmus, President and CEO of Memorial Sloan-Kettering Cancer Center, former head of the National Institutes of Health and a Nobel laureate.

Members of the council include: Shirley Ann Jackson, Craig Mundie, Eric Schmidt and Ahmed Zewail.

Related: Science and Engineering in PoliticsScientists and Engineers in CongressJohn Conyers Against Open ScienceChina’s Technology Savvy Leadership

  • Recent Comments:

    • Chem: I take pride in studying in chemical engineering
    • Michael: This is a truly beautiful design idea: simple, functional, and useful. I had’nt heard of the...
    • Michael: I love projects like this but I can’t imagine that the wind turbine was a justifiable...
    • xay dung dan dung: Science develops, more people to enjoy the novelty. Sometimes life around us there are...
    • Anonymous: The Link the Feynman videos seems to be working both with IE and FF, provided you have the...
    • Justin Hunter: Very cool illustration of mistake proofing! But as you suggest, it could be further improved...
    • Anonymous: I grew up around hummingbirds, and there’s simply nothing like watching them buzz around...
    • James Bly: The statement that most tires are landfilled is not accurate and has not been true for at least...
  • Recent Trackbacks:

  • Links