Posts about cars

Self Driving Cars Have Huge Potential for Benefit to Society

Self-driving cars was something that seemed very far-fetched when I first read Google was seriously investing in pursuing that idea as a commercially viable product (Google’s Self Driving Car – 2010 post). I quickly became convinced they were right. I still think it is questionable if they will succeed (the political issues may well be even more difficult than technical ones). But the chances of success seem reasonable and the investment in research could provide a huge payoff.

Google’s self driving cars have driven 700,000 miles without an accident already; which is amazing. Warren Buffett stated that “self-driving cars are a real threat to the car insurance business” (His company owns the GIECO car insurance company) at the 2014 Berkshire Hathaway shareholder meeting in Omaha.

There are some people, stressing that this is not ready for mass market use. They are right. But, I think it is funny to see people thinking that a very early stage huge innovation in transportation not being ready today is a reasonable criticism. I am amazed that this huge innovation may actually be available before 2020. That would be incredible.

Certainly even then it will have limitations. And certainly there will be accidents. The current transportation system with humans driving cars has thosands of accidents a day and tens of thousands of deaths a year in the USA alone every year. Every year 1.2 million people die worldwide in traffic-related incidents, and over 90% of those accidents are due to human error.

Continue reading

Segun Oyeyiola Converted a Volkswagen Beetle to Use Renewable Power

This Nigerian College Student Built a Wind- And Solar-Powered Car From Scraps

The engineering senior at Nigeria’s Obagemi Awolowo University spent a year retrofitting a Volkswagen Beetle into a wind and solar-powered car, partly made of free scrap parts donated by friends and family. Everything else cost under $6,000.

Not only did Oyeyiola install a giant solar panel on top of the Beetle; he also inserted a wind turbine under the hood. As Preston explains, that allows air to flow into the grill while the car is moving, subsequently turning the turbine’s rotors and charging the battery at the back of the car. Oyeyiola also built a strong suspension system to deal with the weight of the battery itself.

It’s not perfect. The battery takes four to five hours to charge, but Oyeyiola says he’s working on that. The biggest challenges, he says, came from finding the best materials to use, and the people telling him he was wasting his time.

Super cool.

OAU student builds a solar-powered car

Another thing that distinguishes my car from the common ones you see around is that you can know the state of the car through your mobile phones. I wrote a software that you can install which will give you the basic information about the car while in your room.

My message to my fellow students is that Rome was not built in a day. It is better to start anything you want to do now and don’t never, I repeat, never expect someone to believe in your dreams because they may not understand it as you do. Endeavor to follow your heart and do what will make you happy and that which will not affect your fellow being negatively.

It is so great to read what creative engineers all over the globe are able to accomplish.

Related: Oyeyiola Segun on TwitterPromoting Innovation in Sierra LeoneInspirational Engineer Builds Windmill from TrashClay Water Filters for GhanaHelp Science Education in Tanzania

Engineers Save a Life

photo of car resting in river

This photo was taken by the driver’s parents when they arrived. It doesn’t show much of what it went through to get there, but it gets most of the point across. The picture was taken 200 feet away and looking down from the road.

I got into a major accident today that I was able to somehow walk away from. I lost control of my car and went off of a cliff into boulders, and after flipping a few times, settled in the river. I walked away with cuts on my hands from the broken glass and a bruise that runs from my chest over my left shoulder where my seat belt held me in place.

I shouldn’t be alive discussion on Reddit.

swapsrox: Time to send a letter to the manufacturer thanking them for their safety design! I guarantee your letter will be put on an engineer’s wall, and they’ll know there is a reason they go to work every day.

cmdshftn: Great engineering saved your life. The vehicle’s safety systems from the seatbelt to the crumple zones to the design of the seat kept you safe and alive despite all hell going on around you. Please write a letter to the manufacturer thanking their design team, but above all, follow up with whoever you need to in that jurisdiction to find out why there isn’t a guard rail on that road! Vehicle safety helps, but great road design to prevent an accident like yours helps more!

Related: Electronic Stability Control Could Prevent 33% of Crash DeathsDriver Thanks Engineer Who Hit Him on PurposeSmokeless Stove Saves LivesToyota Scion iQ: 37 MPGEngineer Tried to Save His Sister and Invented a Breakthrough Medical Device

Continue reading

Toyota Scion iQ: 37 MPG

I posted on the Toyota iQ a few years ago. It has been successful in Europe for several years and is now available in the USA also as the Scion iQ. Sadly it only gets 37 miles per gallon (the same for city and highway, as it is optimized for city driving). The earlier post discussed the Toyota iQ diesel which achieved 59 MPG (now the UK Toyota sites quotes 64 MPG).

The UK gallon (the imperial gallon) is 1.2 USA gallons – why are we not using the metric system yet :-( 37 MPG would be the highest yield, for a non-hybrid, in the USA, still it is disappointing when compared to the diesel Toyota iQ figures (64 imperial MPG equates to 53 USA mpg).

The base price for the Scion iQ is $15,595. The car is obviously built for city driving: the small size makes it great for finding parking and navigating small streets.

A fully electric Toyota iQ is being planned for 2012 that can be recharged by 4 hours with a normal electric plug. It can be 80% recharged in 15 minutes with a special adapter. It will have a range of about 65 miles.

I really like the management of Toyota and own stock in Toyota.

On another front, sadly, the company behind the aptera concept car (230 MPG) announced they were closing down.

Related: Companies Sharing Engineering Resources Across the GlobeBigger Impact: 15 to 18 mpg or 50 to 100 mpg?Global Installed Wind Power Now Over 1.5% of Global Electricity Demand

Companies Sharing Engineering Resources Across the Globe

Swapping batteries for diesel engines

Car companies, like aircraft manufacturers, are sharing engineering skills across borders to speed up and cut the costs of technological development. It happened with Boeing’s 787 Dreamliner. The American aircraft maker outsourced some of the engineering to Japanese suppliers, admitting that it does not have all the necessary expertise. Likewise, Toyota has agreed to work on hybrid trucks with Ford, and electric vehicles with Tesla, the Silicon Valley sports-car maker. BMW is working on improving the current generation of lithium-ion batteries with France’s Peugeot Citroën. Nissan, as well as joining forces with Renault, has joint projects with Daimler.

There are many reasons to pursue such efforts (as well as drawbacks). My belief is companies would rather not take on the complications of such partnerships but the advantages overcome those desires. The high cost of research into these efforts is a big part of what pushes such collaboration. Also once a company has success they often can build up quite an advantage. The costs of trying to engineer a different solution (that doesn’t violate someone’s patents) often makes buying that technology or partnering attractive.

I really like this webcast, from 2008, on Toyota’s engineering development program.

Related: Wave Disk Engine Could Increase Efficiency 5 Times59 MPG Toyota iQ Diesel Available in Europe (2008)Toyota Cultivating Engineering Talent

Driving Via Direct Signals from the Brain

Last year we learned of Google’s Self Driving Car, which is actually making great progress in the real world (cool). And a few years ago I wrote about Toyota’s wheelchair you control with your mind. Now Nissan is looking at cars that you drive aided by accessing brain signals.

This idea is a bit scary to me, the self driving car is less so. But it is great to see us pushing the engineering boundaries forward. It is such a shame that the huge economic failures in the USA, Europe and Japan are rightly grabbing much of the attention these days. If we just reduced the waste and corruption in the political and financial systems it would allow us to take more joy is the great time we do for awesome engineering breakthroughs. Still, if we can try to block out those painful economic realities, these types of breakthroughs are really cool.

The webcast shows the work of the Artificial Intelligence Group of the Freie Universität Berlin in Germany (BrainDriver).

Related: Nissan’s Cars Will Read Your MindResearching Direct Brain Interfaces for Text EntryWave Disk Engine Could Increase Efficiency 5 Times

And Nissan is collaborating with the École Polytechnique Fédérale de Lausanne in Switzerland (EPFL) on a car that uses your brain signals (along with signals the computer gets via its own sensors) to aid in driving.
Continue reading

Wave Disk Engine Could Increase Efficiency 5 Times

Norbert Müller’s group has received $2.5 million from the U.S. Department of Energy Advanced Research Projects Agency-Energy (ARPA-E) in 2010 to build and develop the wave disk engine, which uses turbo combustion “shock wave” technology to convert either liquid fuel or compressed natural gas or hydrogen into electrical power. With this engine, fuel efficiency for hybrid vehicles could increase 5 times compared to internal combustion engine vehicles on the road today (and 3.5 times less than current hybrid cars), while reducing costs by 30%. The goal of Müller’s team is to produce an engine that would give hybrid vehicles a 500-mile driving range and reduce carbon dioxide emissions by as much as 90%.

In the video he says they hope to have the engines in production vehicles within 3 years. My guess is he is being quite optimistic, but we will see. The new engine would allow 1,000 pounds to be removed from the weight of cars (by removing the need for drive train, radiator…).

Related: $10 Million X Prize for 100 MPG CarEconomic Benefits Brought by Investing in Engineering59 MPG Toyota iQ Diesel Available in Europe (2008)MIT Hosts Student Vehicle Design Summit (2006)

Red-light Cameras Save Lives, Could Save More if Used in More Cities

Red light cameras saved 159 lives in 2004-08 in 14 of the biggest US cities, a new analysis by the Insurance Institute for Highway Safety shows. Had cameras been operating during that period in all large cities, a total of 815 deaths would have been prevented.

“The cities that have the courage to use red light cameras despite the political backlash are saving lives,” says Institute president Adrian Lund. The researchers found that in the 14 cities that had cameras during 2004-08, the combined per capita rate of fatal red light running crashes fell 35 percent, compared with 1992-96. The rate also fell in the 48 cities without camera programs in either period, but only by 14 percent.

The rate of all fatal crashes at intersections with signals — not just red light running crashes — fell 14 percent in the camera cities and crept up 2 percent in the noncamera cities. In the camera cities, there were 17 percent fewer fatal crashes per capita at intersections with signals in 2004-08 than would have been expected. That translates into 159 people who are alive because of the automated enforcement programs.

This result shows that red light cameras reduce not only fatal red light running crashes, but other types of fatal intersection crashes as well. One possible reason for this is that red light running fatalities are undercounted due to a lack of witnesses to explain what happened in a crash. Drivers also may be more cautious in general when they know there are cameras around.

Based on these calculations, if red light cameras had been in place for all 5 years in all 99 US cities with populations over 200,000, a total of 815 deaths could have been avoided.

“Somehow, the people who get tickets because they have broken the law have been cast as the victims,” Lund says. “We rarely hear about the real victims — the people who are killed or injured by these lawbreakers.” Red light running killed 676 people and injured an estimated 113,000 in 2009. Nearly two-thirds of the deaths were people other than the red light running drivers — occupants of other vehicles, passengers in the red light runners’ vehicles, bicyclists, or pedestrians.

Previous research has established that red light cameras deter would-be violators and reduce crashes at intersections with signals. Institute studies of camera programs have found that red light violations fell at intersections where cameras were installed and that this effect also spilled over to intersections without cameras. An Institute study in Oxnard, Calif., found that injury crashes at intersections with traffic signals fell 29 percent citywide after automated enforcement began.

The new study adds to this by showing that cameras reduce not only violations and crashes throughout entire communities but deaths, too.

Red-light cameras save lives, study says

The 2.2 million intersection crashes recorded in 2009 made up about 41 percent of all accidents. They resulted in 81,112 serious injuries and 7,358 deaths. Police established red-light running as the cause of 676 deaths and 113,000 injuries. The vast majority of the people who died – 64 percent – were not driving the vehicle that ran the light. They were passengers, other drivers, pedestrians and cyclists.

Related: D.C. Red-Light Cameras Fail to Curb AccidentsDo Red Light Cameras Make for Safer Intersections?Traffic Congestion and a Non-SolutionEngineering a Better Blood Alcohol Sensor

Google’s Self Driving Car

Google thinks big. Google thinks like engineers. Google is willing to spend money taking on problems that other companies don’t. They have been developing a car that can drive itself. They see a huge amount of waste (drivers lives and drivers time) and seek a solution.

Larry and Sergey founded Google because they wanted to help solve really big problems using technology. And one of the big problems we’re working on today is car safety and efficiency. Our goal is to help prevent traffic accidents, free up people’s time and reduce carbon emissions by fundamentally changing car use.

So we have developed technology for cars that can drive themselves. Our automated cars, manned by trained operators, just drove from our Mountain View campus to our Santa Monica office and on to Hollywood Boulevard. They’ve driven down Lombard Street, crossed the Golden Gate bridge, navigated the Pacific Coast Highway, and even made it all the way around Lake Tahoe. All in all, our self-driving cars have logged over 140,000 miles. We think this is a first in robotics research.

Our automated cars use video cameras, radar sensors and a laser range finder to “see” other traffic, as well as detailed maps (which we collect using manually driven vehicles) to navigate the road ahead. This is all made possible by Google’s data centers, which can process the enormous amounts of information gathered by our cars when mapping their terrain.

To develop this technology, we gathered some of the very best engineers from the DARPA Challenges, a series of autonomous vehicle races organized by the U.S. Government. Chris Urmson was the technical team leader of the CMU team that won the 2007 Urban Challenge. Mike Montemerlo was the software lead for the Stanford team that won the 2005 Grand Challenge. Also on the team is Anthony Levandowski, who built the world’s first autonomous motorcycle that participated in a DARPA Grand Challenge, and who also built a modified Prius that delivered pizza without a person inside.

Related: Larry Page and Sergey Brin WebcastEnergy Secretary Steve Chu and Google CEO Eric Schmidt Speak On Funding Science ResearchGoogle’s Ten Golden RulesCMU Wins $2 million in DARPA Auto Race

How the Practice and Instruction of Engineering Must Change

Chief Scientist for the Rocky Mountain Institute and MacArthur Fellow, Amory Lovins, describes how small gains in efficiency at the consumption point can trigger gains that are magnitudes larger at higher levels and discusses how engineering must be practiced and taught fundamentally different.

Related: MIT Hosts Student Vehicle Design Summit59 MPG Toyota iQ Diesel Available in EuropeWebcast: Engineering Education in the 21st Century

Car Style Mass Transit Mag Lev System

Skytran is a very cool sounding transportation option. It promises, individual transportation modules traveling at 100 miles per hour within the city nonstop to many more points than light rail can service. The current non-solutions we have been attempting for decades of building more and more roads is not working.

The costs is estimated at much cheaper than other alternatives. It would be great if something like this could actually make it (it is much easier to dream about possibilities than to bring them into the world).

From the SkyTran web site:

It works like a taxi that picks you up and drives you to your destination. You travel only with people you choose to, in personal-sized vehicles. The electric vehicles are automatically driven at a constant speed on the main guideway. Like on a freeway, you travel non-stop until taking an exit-ramp at your destination. Also like a freeway, instead of intersections PRT has over-passes so you truly never have to stop… vehicles are lined up waiting for you at boarding stations, and after you get out, they either line up to wait for another rider, or go park themselves and wait for peak periods when they’ll be needed.

At 60 mph the electricity for SkyTran would cost less than 1 cent per mile (at current electricity costs of 11 cents per kWhr). By comparison, buying gas for a 30-MPG car at $2/gallon costs more than 7 times as much.

The site estimates the cost at$10 million per mile for one-way track and $15 million per mile for two-way track. Fundamentally, SkyTran track can be cheaply built because all of the components are very light-weight. Weight is why roads and trains cost so much… In comparison, SkyTran’s guideway only needs to support one 1000 pound (loaded) vehicle at a time… See the detailed cost evaluation page.
Continue reading

  • Recent Comments:

    • Anders Jytzler: I love this! Imagine how much of the ocean we haven’t explored yet. Combined with...
    • Maureen Coffey: Wound healing is actually an interesting subject. Both astronauts, who though having a...
    • Anonymous: That’s great news for engineers! Although I bet there is good amount of variability for...
    • Anonymous: Neat project, thanks for sharing! Projects like this are a great opportunity for students from...
    • Roni: your article was really good thank you
    • sandybrown: RoboBoat is a powerful technology.it’s also challenges and competitive.really...
    • batu: It looks good.Planes are well now but boats are new.I hope it will development
    • Angela: Video lectures are very good. Video easily understood and clear. I love this style of expression,...
  • Recent Trackbacks:

  • Links