Posts about Career

£50m Package to Attract Scientists and Boost Welsh Economy

‘Star scientists’ £50m package to boost Welsh economy

First Minister Carwyn Jones said the fund would be used to encourage leading professors to move to Wales to work and boost research and the economy. It will pay for specialist equipment, top-up salaries to the level outstanding academics would expect and will fund members of their teams.

our network plans will enable us to attract more talent to Wales to help drive this figure up and in due course create more high quality business and research jobs in Wales.” The strategy sets out three key areas to boost research and businesses – the life sciences and health; low carbon, energy and environment; and advanced engineering and materials.

The Welsh government said it wanted to see more industry-academic partnerships like SPECIFIC led by Swansea University with Tata Steel UK. The £20m project aims to turn homes and businesses into self-generating “power stations” by developing a special coating for ordinary building materials, such as steel and glass, that traps and stores solar energy.

The USA dominated the practice of attracting leading scientists a few decades ago. In the last decade or two Europe stepped up and was able to attract global talent. Lately Asia (Singapore, Korea, China…) has been spending to attract leading scientists. I believe Asia will continue to do so and the benefits of doing so will pay off handsomely for Asia (at the expense of Europe and the USA).

Related: USA Losing Scientists and Engineers Educated in the USAInvest in Science for a Strong EconomyAsia: Rising Stars of Science and EngineeringSingapore Research Fellowships

Engineers Again Shown to Lead More Companies Than Other Disciplines

I have written previously about the fact that more S&P 500 CEO’s are engineering majors than any other discipline. The group putting out those studies have stopped doing so, unfortunately. There is a new study based on mining Facebook data and the results again show engineers doing very well.

I wish they provided data for the larger companies, but they don’t. They show a breakdown of 9,461 (CEO or founders) with a business undergraduate major and 9,334 with an engineering degree. For those with advanced degrees 3,337 have an engineering master’s or doctorate and 1,016 have an MBA.

In the latest (2008) data I have for S&P 500 CEO’s 22% were engineers. Engineers seem to make up under 5% of college graduates (based on my eyeballing of this Dept. of Education data). Business meanwhile seems to make up about 20% of the majors.

See more posts looking at science and engineering careers: Future Prospects for EngineersEngineering Again Dominates The Highest Paying College MajorsScience and Engineering in Global EconomicsCareer Prospect for Engineers Continues to Look Positive

Remote Presence Robot

Anybots allow remote presence today. They can be rented for just $600 a month. You can purchase your own for just $15,000.

The newest version, just unveiled at a CES has a much bigger screen (which seems very wise to me).

This is another example of robots making it into real use. While I am sure few workplaces are ready for this jump today, 10 or 20 years from now a telepresence robot (that can do much more) is likely I think to be significantly used. Not only will functionality increase, prices will drop dramatically: as the wonderful combination so often happens with technology. There is a great deal of effort going into making commercial viable “personal” robots. I think these efforts will make significant inroads in the next 10-20 years.

My old office wouldn’t have been willing to pay $15,000 but one of our developers looked into creating his own (after he moved and was working remotely). He hasn’t quite gotten it done yet, but may at some point.

Related: Managing By Rolling Around (I like how the robot owner used the robot to have his mother attend his wedding (and dressed up the robot) – Robot Finds Lost Shoppers and Provides DirectionsNew Yorkers Help Robot Find Its Way in the Big CityToyota Partner Robots

Stand with Science – Late is Better than Never

The USA public has made very bad decisions in who to send to Washington DC to spend our money (and the money of our children and grandchildren). We have wasted hundreds of billions that could have been spent more wisely. I happen to think investing in science and engineering is important for a societies economic health. The problem the USA has is we have chosen to waste lots of money for decades, at some point you run out of money (yes the USA government doesn’t really, as they can print it, but essentially they do – in practical terms).

I would certainly eliminate tax breaks for trust fund babies and trust fund grandchildren (while your grandchildren are going to be left holding the bag for the spending those elected by us, the grandchildren of the rich often get huge trust funds with no taxes being paid at all). But most of the people we have elected want to give trust fund babies huge payoffs. I would cut much spending in government – spending 5% less in 2020 than we did this year would be fine with me. But we don’t elect people that support that. I would support not adding new extensions to tax cuts sold with false claims and again supported by those we continue to elect. I wouldn’t allow the financial industry subverting of markets. But again we elect people that do allow that. And when the bill comes due for letting them take tens and hundreds of millions in individual profits in the good years, we can either let the economy go into a depression (maybe) or spend hundreds of billions to trillions bailing out those institutions our politicians let threaten the economy.

It might not seem fair, but there are consequences to allowing our political system to waste huge amounts of money paying of special interests for decades. And investing in science and engineering has been a casualty and will likely continue to be. Eventually you run out of money, even for the stuff that matters. Trying to fight for politicians that will put the interests of the country ahead of their donors is not something you can do effectively only when your interests are directly threatened. At that point things may already be too bad to be saved.

I have been writing about the failed political system for quite awhile now. I wrote awhile back that Hillary Clinton’s idea to tripple the number of GRFP awards was something I thought was very smart economically. But even then I questioned if we could afford it, if we refused to do anything else different (just adding new spending isn’t what the country needed).

Even in the state the politicians we continue to elect (we elect the same people election after election – there is no confusion about what they will do) we can debate what to cut and for something we spend so little on as investing science and engineering we can even easily increase that spending and not have any real impact on cutting overall spending. But those we have elected don’t show much interest in investing in science and engineering overall.

The USA continues to invest a good deal in science and engineering. But the difference in focus today versus the 1960’s is dramatic. The USA will continue to do well in the realm of science. The advantages gained over decades leave us in a hugely beneficial position – and one that takes other countries decades to catch up to. Now some countries have been working on that for decades now, and are doing very well. China, hasn’t been at it quite as long but has been making amazingly fast progress (similar to the amazing economic story).

Continue reading

Apply to be an Astronaut

Are you looking to change jobs? NASA is seeking outstanding scientists, engineers (job announcement closed so broken link removed), and other talented professionals to carry forward the great discovery process that its mission demands. Creativity. Ambition. Teamwork. A sense of daring. Curiosity. That’s what it takes to join NASA, one of the best places to work in the Federal Government.

photo of astronaut's faceplate reflecting earth

The National Aeronautics and Space Administration (NASA) has a need for Astronaut Candidates to support the International Space Station Program and future deep space exploration activities.

In 1959 NASA selected its first group of 7 astronaut candidates. Since then 20 additional classes have been selected; bringing the total number of astronaut candidates to 330.

The astronauts of the 21st century will continue to work aboard the International Space Station in cooperation with our international partners; help to build and fly a new NASA vehicle, the Orion Multi-Purpose Crew Vehicle (MPCV) designed for human deep space exploration; and further NASA’s efforts to partner with industry to provide a commercial capability for space transportation to the space station.

NASA is in the process of identifying possible near-Earth asteroids to explore with the goal of visiting an asteroid in 2025. With that goal, and keeping in mind that the plan is to send a robotic precursor mission to the asteroid approximately five years before humans arrive, NASA will need to select the first set of targets to explore within the next decade.

Requirement include: Applicants for the Astronaut Candidate Program must meet the basic education requirements for NASA engineering and scientific positions, specifically: successful completion of standard professional curriculum in an accredited college or university leading to at least a bachelor’s degree with major study in an appropriate field of engineering, biological science, physical science, or mathematics.

Related: NASA Robotics AcademyNASA’s Mars Curiosity RoverAstronaut Drops a Hammer and Feather on the Moon

Continue reading

I Always Wanted to be Some Sort of Scientist

A nice simple post by a soon to be Dr. of Genetics and Molecular Biology on what being a scientist is like for her. I like her take, which I think is much more accurate than some of the generalities people use. The main reason people (men or women) become scientists because they want to be scientists.

photo of almost-Dr. Caitlin

Photo the almost-Dr. Caitlin

The truth is science requires you to be social. We share ideas, techniques, and equipment. A good scientist knows her limitations and uses someone else’s expertise when her own is not enough. The modern scientist communicates not only through conferences and journals, but also through blogging and Facebook.

When a non-scientist (usually my parents or some other close relative) asks me about what I do, they inevitably want to tie it back to how I’m curing a disease and saving the world. I am not curing a disease or saving the world.

I study science because it’s cool. I study basic science — asking questions for the purpose of learning the answer. That doesn’t mean what I do isn’t important. Lots of ground-breaking medical advances have been made just because someone asked a question no one else thought to ask.

To all you ladies fighting the good fight in other fields, keep at it, because the numbers are going up for women with advanced degrees.

I’ve always wanted to be some sort of scientist. When I was in elementary school I wanted to be a paleontologist because dinosaurs are awesome (and so was “Jurassic Park”). When I was 11, I read the Hot Zone and knew I wanted to be a biologist. Though there were times that I flirted with the Dark Side, i.e., medical school, but mostly only because when my teachers figured out I was good at science they said go to medical school. No one even suggested becoming a scientist.

Great stuff. Good Luck, Caitlin.

Related: Movie Aims to Inspire College Students With Tales of Successful Minority ScientistsKids on Scientists: Before and After Talking to Real Live ScientistsWomen Choosing Other Fields Over Engineering, Math, Physics and Computer Science

Career Prospect for Engineers Continues to Look Positive

As I have written previously the career prospects for engineers are bright around the globe. Many countries realize the importance of engineering and have taken steps to compete as a center of excellence for engineering. It is a smart economic policy. Ironically, the USA, that did such a great job at this in the 1960’s and 1970’s, has been falling down in this regard. A significant reason for this is the USA can only fund so many things and a broken health care system, military complex, bailouts to bankers (trust fund babies and others) cost a lot of money. You chose what to fund, and those are taking much of the available USA funds. There are also non-economic reasons, such as the turn in the last decade in the USA to make the barriers for foreigner engineers (and others) to go through to go to school, visit and stay in the USA have all increased dramatically.

Back to the prospects for engineers: their are shortages of good engineers all over (and the future projections don’t show any reason to believe this will change). Germany Faces a Shortage of Engineers:

In June, the Association of German Engineers (VDI) reported that there were 76 400 vacant engineering jobs—an all-time high.

Policymakers in Berlin have responded to the shortage of skilled workers with a number of measures, including changes in immigration rules that allow German companies to hire engineers from other countries, including those outside of the European Union. Among them: The annual salary that companies must pay foreigners has been lowered from 60,000 Euro (US $95,000) to 40,000 Euro, which is roughly the starting salary of an engineering graduate in Germany…

To make it easy for engineers to move around Europe, engineering associations and other groups across Europe are working with the European Commission (the executive arm of the European Union) to launch the new Engineering Card. The card, which German engineers can apply for now and other countries are planning to launch, provides standardized information about the engineer’s qualifications and skills for greater transparency.

“We don’t expect many engineers will come, because among other reasons, there is a shortage of engineers across Europe,”

Related: Engineering Again Dominates The Highest Paying College Degree ProgramsS&P 500 CEO’s: Engineers Stay at the TopChina’s Technology Savvy LeadershipEngineers: Future ProspectsEconomic Strength Through Technology Leadership

Continue reading

Increasing the Undergraduate Study of Programing and Software

There is a role for computer science. It also seems to me there is a much larger role for some study of computing (programing, databases, software, technology) that isn’t actually computer science. Where exactly this should go into an undergraduate school, I am not sure. But it seems to me, an understanding of computing is extremely important to those that want to lead in the next 40 years and we should be able to put more of that into undergraduate studies.

Computer Studies Made Cool, on Film and Now on Campus

The number of computer science degrees awarded in the United States began rising in 2010, and will reach 11,000 this year, after plummeting each year since the end of the dot-com bubble in 2004, according to the Computing Research Association, which tracks enrollment and degrees. Enrollment in the major peaked around 2000, with the most degrees — 21,000 — awarded four years later. The number of students who are pursuing the degree but have not yet declared their major increased by 50 percent last year.

To capitalize on the growing cachet of the tech industry, colleges nationwide, including Stanford, the University of Washington and the University of Southern California, have recently revamped their computer science curriculums to attract iPhone and Facebook-obsessed students, and to banish the perception of the computer scientist as a geek typing code in a basement.

Even universities not known for computer science or engineering, like Yale, are seizing the moment. The deans of the Ivy League engineering schools recently started meeting to hatch ways to market “the Ivy engineer.”

The new curriculums emphasize the breadth of careers that use computer science, as diverse as finance and linguistics, and the practical results of engineering, like iPhone apps, Pixar films and robots, a world away from the more theory-oriented curriculums of the past.

I think the basic thrust of this move is good. I am not sure if it is really right to expand computer science to make it more attractive or to instead create something else. Computer engineering would seem to be one option, but I am not sure that is really right either. We do need computer scientists, but frankly we need maybe 100 or 1,000 times more programmers. And we need many other UX designers, program managers that understanding technology and programing, database administrators, system administrators… and really these people don’t need computer science backgrounds.

On a separate topic we also need better ways for everyone to understand technology better. We need good course for those majoring in economics, business, philosophy, English, political science… Understanding technology and how it works is fundamental to managing in the world we live in today and will live in.

Related: Programming Grads Meet a Skills Gap in the Real WorldHow To Become A Software Engineer/ProgrammerEngineering Again Dominates The Highest Paying College Degree ProgramsWant to be a Computer Game Programmer?software programming posts on my management blog

Engineering Again Dominates The Highest Paying College Degree Programs

As usual most of the highest paying undergraduate college degrees in the USA are engineering. Based on data from payscale, all of the top 10 highest paying fields are in engineering. The highest non-engineering fields are applied mathematics and computer science. Petroleum Engineering salaries have exploded over the last few years to $93,000 for a starting median salary, more than $30,000 above the next highest paying degree.

Mid-career median salaries follow the same tendency for engineering degrees, though in this case, 3 of the top 10 salaries (15 years into a career) are for those with non-engineering degrees: applied mathematics, physics and economics.

Highest Paid Undergrad College Degrees
Degree Starting Median Salary Mid-Career Median Salary 2009 starting salary
Petroleum Engineering $93,000 $157,000
Chemical Engineering $64,800 $108,000 $65,700
Nuclear Engineering $63,900 $104,000
Computer Engineering $61,200 $99,500 $61,700
Electrical Engineering $60,800 $104,000 $60,200
Aerospace Engineering $59,400 $108,000 $59,600
Material Science and Engineering $59,400 $93,600
Industrial Engineering $58,200 $97,400 $57,100
Mechanical Engineering $58,300 $97,400 $58,900
Software Engineering $56,700 $91,300
Applied Mathematics $56,400 $101,000
Computer Science $56,200 $97,700 $56,400

Related: PayScale Survey Shows Engineering Degree Results in the Highest Pay (2009)Engineering Majors Hold 8 of Top 10 Highest Paid Majors (2010)Engineering Graduates Get Top Salary Offers in 2006Shortage of Petroleum Engineers (2006)10 Jobs That Provide a Great Return on Investment

More degrees are shown in the following table, but this table doesn’t include all the degree; it just shows a sample of the rest of the degrees.
Continue reading

Votizen is Looking for Software Engineers

Link broken by pointy haired boss at Votizen, so I removed it. This phb behavior will make those of us who link to websites hesitant to trust anything Votizen posts will stay around 🙁

A nice presentation on why software engineers should work at Votizen.

Related: How To Become A Software Engineer/ProgrammerThe Software Developer Labor MarketWant to be a Computer Game Programmer?IT Talent Shortage, or Management Failure?

Google Summer of Code is Accepting Application Now

Google Summer of Code 2011 is accepting applications. This is a great initiative I have highlighted previously: Google Summer of Code 2009, Google Summer of Code 2008. The deadline for applications is April 8th.

Google Summer of Code is a program that offers student developers stipends to write code for various open source projects. The program has brought together over 4,500 students with over 300 open source projects, to create millions of lines of code. Participants (including students and mentors) have represented over 85 countries. The program, which kicked off in 2005, is now in its seventh year.

Participating organizations include: R Project for Statistical Computing, Debian Project, WordPress and the Marine Biological Laboratory. (9 of the 175 participating organizations list Ruby as part of their project :-).

For 2010 the effort had a budget of $5,000,000 and accepted 1026 students partnering with 150 Open Source organizations. This year they plan on 1,150 – 1,200 student positions. For 2007 they had 6,200 applications and 7,000 in 2008. I don’t see any data on applicants for 2009.

As for the application it should include the following: your project proposal, why you’d like to execute on this particular project, and the reason you’re the best individual to do so. Your proposal should also include details of your academic, industry, and/or open source development experience, and other details as you see fit. An explanation of your development methodology is a good idea, as well.

Related: Engineering Majors Hold 8 of Top 10 Highest Paid MajorsHow To Become A Software Engineer/Programmerposts from my management blog on software development

  • Recent Comments:

    • Richard Hopp: Awesome blog post, love the biodiversity. Really excited after watching this video, since I...
    • Robbie Miller: How fantastic, not only a great subject to study, but to be able to travel the world too....
    • Jaspal Singh: Japan has an edge when it comes to humanoid robots. No doubt in few more year, you will find...
    • Marcus Williams: This is actually a marvelous piece of engineering. Kudos for sharing!
    • M Zeeshan Haider: You are so interesting! I don’t believe I’ve truly read through anything like...
    • Jaspal Singh: I fully agree to the post idea. The farming is a natural process and should be free from any...
    • Touseef Ahmed: What a best creative idea I think you blong to india.
    • courier: I like the trailer 🙂
  • Recent Trackbacks:

  • Links