Brian Cox – Lecture on Science and Quantum Mechanics

Posted on December 27, 2011 1 Comment

Brian Cox gave a wonderful lecture at the Royal Institution of Great Britain. This is one more great thing the internet makes possible: have great fun while you learn. Enjoy.

With the help of Jonathan Ross, Simon Pegg, Sarah Millican and James May, Brian shows how diamonds – the hardest material in nature – are made up of nothingness; how things can be in an infinite number of places at once; why everything we see or touch in the universe exists; and how a diamond in the heart of London is in communication with the largest diamond in the cosmos.

Related: Quantum Mechanics Made Relatively Simple Podcasts by Hana BetheBrian Cox Particle Physics WebcastPhysicists Observe New Property of Matter

Quantum Mechanics Made Relatively Simple Podcasts

Posted on February 18, 2006 3 Comments

Three Lectures by Hans Bethe

In 1999, legendary theoretical physicist Hans Bethe delivered three lectures on quantum theory to his neighbors at the Kendal of Ithaca retirement community (near Cornell University).

Intended for an audience of Professor Bethe’s neighbors at Kendal, the lectures hold appeal for experts and non-experts alike. The presentation makes use of limited mathematics while focusing on the personal and historical perspectives of one of the principal architects of quantum theory whose career in physics spans 75 years.

Physics Lesson

Posted on December 9, 2012 No Comments

Related: Brian Cox Lecture on Science and Quantum MechanicsScientific Inquiry Process Finds More Evidence Supporting Einstein’s Theory of GravityFriday Fun: CERN Version

Evolution Follows a Predictable Genetic Pattern

Posted on November 1, 2012 No Comments

Far from random, evolution follows a predictable genetic pattern

The researchers carried out a survey of DNA sequences from 29 distantly related insect species, the largest sample of organisms yet examined for a single evolutionary trait. Fourteen of these species have evolved a nearly identical characteristic due to one external influence — they feed on plants that produce cardenolides, a class of steroid-like cardiotoxins that are a natural defense for plants such as milkweed and dogbane.

Though separated by 300 million years of evolution, these diverse insects — which include beetles, butterflies and aphids — experienced changes to a key protein called sodium-potassium adenosine triphosphatase, or the sodium-potassium pump, which regulates a cell’s crucial sodium-to-potassium ratio. The protein in these insects eventually evolved a resistance to cardenolides, which usually cripple the protein’s ability to “pump” potassium into cells and excess sodium out.

Andolfatto and his co-authors examined the sodium-potassium pump protein because of its well-known sensitivity to cardenolides. In order to function properly in a wide variety of physiological contexts, cells must be able to control levels of potassium and sodium. Situated on the cell membrane, the protein generates a desired potassium to sodium ratio by “pumping” three sodium atoms out of the cell for every two potassium atoms it brings in.

Cardenolides disrupt the exchange of potassium and sodium, essentially shutting down the protein, Andolfatto said. The human genome contains four copies of the pump protein, and it is a candidate gene for a number of human genetic disorders, including salt-sensitive hypertension and migraines. In addition, humans have long used low doses of cardenolides medicinally for purposes such as controlling heart arrhythmia and congestive heart failure.

Cool stuff. It makes sense to me which is nice (it is nice to get confirmation that I find what actually exists is sensible). When things that are true just seem crazy it is a bit disconcerting – like quantum mechanics. It is fun to read stuff that totally shakes up preconceived notions, but even then it is nice once I think understand it to find it sensible.

Related: All present-day Life on Earth Has A Single AncestorCambrian Explosion SongBacteriophages: The Most Common Life-Like Form on EarthMicrocosm by Carl Zimmer

Quantum Information Theory Postulated As Source of Emergent Theory of Gravity

Posted on August 15, 2011 No Comments

I love the advances we have made using our understanding of science and engineering, like the internet, air conditioning and antibiotics. I also love the discussion of research where we really have only educated guesses about what the scientific inquiry process is telling us about the way things are. This research from the University of York is very interesting.

Escaping gravity’s clutches: the black hole breakout

Professor Braunstein says: “Our results didn’t need the details of a black hole’s curved space geometry. That lends support to recent proposals that space, time and even gravity itself may be emergent properties within a deeper theory. Our work subtly changes those proposals, by identifying quantum information theory as the likely candidate for the source of an emergent theory of gravity.”

Dr Patra adds: “We cannot claim to have proven that escape from a black hole is truly possible, but that is the most straight-forward interpretation of our results. Indeed, our results suggest that quantum information theory will play a key role in a future theory combining quantum mechanics and gravity.”

It is too bad the University of York supports closed science and allows work to be withheld from the public to support outdated publishers business models. Luckily scientists often support open science and publish material openly – I have provided a link for those interested in science instead of the link the University of York gives to a publishers closed system.

Black Hole Evaporation Rates without Spacetime

Verlinde recently suggested that gravity, inertia, and even spacetime may be emergent properties of an underlying thermodynamic theory. This vision was motivated in part by Jacobson’s 1995 surprise result that the Einstein equations of gravity follow from the thermodynamic properties of event horizons. Taking a first tentative step in such a program, we derive the evaporation rate (or radiation spectrum) from black hole event horizons in a spacetime-free manner. Our result relies on a Hilbert space description of black hole evaporation, symmetries therein which follow from the inherent high dimensionality of black holes, global conservation of the no-hair quantities, and the existence of Penrose processes. Our analysis is not wedded to standard general relativity and so should apply to extended gravity theories where we find that the black hole area must be replaced by some other property in any generalized area theorem.

Related: Gravity and the Scientific MethodGravity May Emerge from Quantum InformationDoes Time ExistWebcast of Astronaut Testing Gravity on the Moonsupport open science

Ten Things Everyone Should Know About Science

Posted on March 20, 2011 3 Comments

As the writer of this blog (which is located at engineering.curiouscatblog.net) I am a strong believer in the importance of scientific literacy. Neil Degrasse Tyson stated the importance very well, as I mentioned in a previous post, the scientifically literate see a different world

If you are scientifically literate the world looks very different to you. Its not just a lot of mysterious things happening. There is a lot we understand out there. And that understanding empowers you to, first, not be taken advantage of by others who do understand it. And second there are issues that confront society that have science as their foundation. If you are scientifically illiterate, in a way, you are disenfranchising yourself from the democratic process, and you don’t even know it.

The Financial Times has complied a list of the 10 things everyone should know about science

  1. Evolution – previous posts: Evolution is Fundamental to Scienceposts tagged: evolution
  2. Genes and DNA – tags: genesgeneticsDNARNA
  3. Big bang – tags: physics, posts mentioning big bang
  4. Relativity – General Relativity Einstein/Essen Anniversary Test – posts mentioning relativity
  5. Quantum mechanics – Quantum Mechanics Made Relatively Simple Podcasts, Quantum mechanics
  6. Radiation
  7. Atoms and nuclear reactions
  8. Molecules and chemical reactions – posts on chemistry
  9. Digital data – I must admit, even reading their comments, I don’t understand what they are thinking here. There certainly is a great deal of digital data and the future certainly going to involve a great deal more, but this just doesn’t fit, in my opinion.
  10. Statistical significance – Seeing Patterns Where None Exists, Statistics Insights for Scientists and Engineers, Correlation is Not Causation post on statisticsexperimentation

It is a challenge to create such a list. I agree with most of what they have. I would like to look at changing the last 2 and radiation, though. I would probably include something about the scientific method rather than statistical significance. Another area I would consider is something about bacteria and/or viruses. You can maybe include them under genes, but viruses and bacteria are amazing in the very strange things they do with genes and I think that is worthy of its own item. Another possibility is thinking of separating out a second spot for things related to the scientific method – causation, randomized testing, multivariate experiments… I would also consider one, or more of the following or something related to them biology – chlorophyll, the the life of bacteria in our bodies, something related to human health (how drugs work, medical studies…), etc..

The Ten Things Everyone Should Know About Science

Evolution through natural selection remains as valid today as it was 150 years ago when expressed with great elegance by Charles Darwin in The Origin of Species. The mechanism of evolution depends on the fact that tiny hereditable changes take place the whole time in all organisms, from microbes to people.

An important feature of Darwinian evolution is that it operates at the level of the individual. There is no mechanism for natural selection to change the species as a whole, other than through the accumulation of changes that lead to the survival of the fittest individuals.

The rate of evolution varies enormously between different types of organism and different environmental circumstances. It can proceed very quickly when the pressure is great, as, for example, with bacteria exposed to antibiotics, when drug-resistant mutations may arise and spread through the bacterial population within months.

Why does it matter? Evolution is coming under renewed assault, particularly in the US, from fundamentalist Christians who want creationism to be taught in schools. Although evolution has had virtually unanimous support from professional scientists for at least a century, polls show that American public opinion still favours creationism.

Related: Poor Results on Evolution and Big Bang Questions Omitted From NSF ReportNearly Half of Adults in the USA Don’t Know How Long it Takes the Earth to Circle the SunScience Knowledge Quiz

Gravity Emerges from Quantum Information, Say Physicists

Posted on April 1, 2010 1 Comment

Gravity Emerges from Quantum Information, Say Physicists

One of the hottest new ideas in physics is that gravity is an emergent phenomena; that it somehow arises from the complex interaction of simpler things.

perhaps the most powerful idea to emerge from Verlinde’s approach is that gravity is essentially a phenomenon of information.

Over recent years many results in quantum mechanics have pointed to the increasingly important role that information appears to play in the Universe. Some physicists are convinced that the properties of information do not come from the behaviour of information carriers such as photons and electrons but the other way round. They think that information itself is the ghostly bedrock on which our universe is built.

Gravity has always been a fly in this ointment. But the growing realisation that information plays a fundamental role here too, could open the way to the kind of unification between the quantum mechanics and relativity that physicists have dreamed of.

This speculative physics is fascinating. Open access paper: Gravity from Quantum Information.

Related: Does Time ExistQuantum Mechanics Made Relatively Simple PodcastsLaws of Physics May Need a RevisionOpen Science: Explaining Spontaneous Knotting

Before the Big Bang

Posted on December 16, 2008 1 Comment

Did our cosmos exist before the big bang?

The theory that the recycled universe was based on, called loop quantum cosmology (LQC), had managed to illuminate the very birth of the universe – something even Einstein’s general theory of relativity fails to do.

LQC is in fact the first tangible application of another theory called loop quantum gravity, which cunningly combines Einstein’s theory of gravity with quantum mechanics. We need theories like this to work out what happens when microscopic volumes experience an extreme gravitational force, as happened near the big bang, for example.

If LQC turns out to be right, our universe emerged from a pre-existing universe that had been expanding before contracting due to gravity. As all the matter squeezed into a microscopic volume, this universe approached the so-called Planck density, 5.1 × 1096 kilograms per cubic metre. At this stage, it stopped contracting and rebounded, giving us our universe.

In classical cosmology, a phenomenon called inflation caused the universe to expand at incredible speed in the first fractions of a second after the big bang. This inflationary phase is needed to explain why the temperature of faraway regions of the universe is almost identical, even though heat should not have had time to spread that far – the so-called horizon problem. It also explains why the universe is so finely balanced between expanding forever and contracting eventually under gravity – the flatness problem. Cosmologists invoke a particle called the inflaton to make inflation happen, but precious little is known about it.

Related: Cosmology Questions AnsweredQuantum Mechanics Made Relatively Simple Podcasts10 Most Beautiful Physics ExperimentsExtra-Universal Matter

2007 National Medals of Science and Technology

Posted on October 9, 2008 3 Comments

photo of 2007 Medals of Science Presentation at the White House

2007 National Medal of and Technology and Innovation

Paul Baran for the invention and development of the fundamental architecture for packet-switched communication networks, which provided a paradigm shift from the circuit-switched communication networks of the past, and later was used to build the ARPANET and the Internet.

Armand V. Feigenbaum for his leadership in the development of the economic relationship of quality costs, productivity improvement, and profitability, and for his pioneering application of economics, general systems theory and technology, statistical methods, and management principles that define The Total Quality Management approach for achieving performance excellence and global competitiveness. See the Curious Cat Management Improvement portal.

Adam Heller for his fundamental contributions to electrochemistry and bioelectric chemistry, and the subsequent application of those fundamentals in the development of technological products that improved the quality of life across the globe, most notably in the area of human health and well-being.

Carlton Grant Willson for the creation of novel lithographic imaging materials and techniques that have enabled the manufacturing of smaller, faster, and more efficient microelectronic components that have improved the competitiveness of U.S. microelectronics industry.
Read more

Werner Heisenberg

Posted on August 6, 2008 1 Comment

photo of Werner Heisenberg

Read a very nice biography from Center for History of Physics of the American Institute of Physics for Werner Heisenberg, the founder of quantum mechanics, and the Heisenberg uncertainty principle:

Heisenberg set himself the task of finding the new quantum mechanics upon returning to Göttingen from Copenhagen in April 1925. Inspired by Bohr and his assistant, H.A. Kramers, in Copenhagen, Pauli in Hamburg, and Born in Göttingen, Heisenberg’s intensive struggle over the following months to achieve his goal has been well documented by historians. Since the electron orbits in atoms could not be observed, Heisenberg tried to develop a quantum mechanics without them.

He relied instead on what can be observed, namely the light emitted and absorbed by the atoms. By July 1925 Heisenberg had an answer, but the mathematics was so unfamiliar that he was not sure if it made any sense. Heisenberg handed a paper on the derivation to his mentor, Max Born, before leaving on a month-long lecture trip to Holland and England and a camping trip to Scandinavia with his youth-movement group. After puzzling over the derivation, Born finally recognized that the unfamiliar mathematics was related to the mathematics of arrays of numbers known as “matrices.” Born sent Heisenberg’s paper off for publication. It was the breakthrough to quantum mechanics.

Related: 1932 Nobel Prize in Physicsphoto, 1927Uncertainty: Einstein, Heisenberg, Bohr, and the Struggle for the Soul of Science by David Lindley – 2007 Nobel Prize in Physicsposts on physics

Explaining the Missing Antimatter

Posted on March 19, 2008 2 Comments

Flipping particle could explain missing antimatter

It is one the biggest mysteries in physics – where did all the antimatter go? Now a team of physicists claims to have found the first ever hint of an answer in experimental data. The findings could signal a major crack in the standard model, the theoretical edifice that describes nature’s fundamental particles and forces.

In its early days, the cosmos was a cauldron of radiation and equal amounts of matter and antimatter. As it cooled, all the antimatter annihilated in collisions with matter – but for some reason the proportions ended up lopsided, leaving some of the matter intact.

Physicists think the explanation for this lies with the weak nuclear force, which differs from the other fundamental forces in that it does not act equally on matter and antimatter. This asymmetry, called CP violation, could have allowed the matter to survive to form the elements, stars and galaxies we see today.

“It is tantalisingly interesting at the moment,” says Val Gibson, an expert on B meson physics at the University of Cambridge. “If it is true, it is earth-shattering.” Jacobo Konigsberg, who leads the CDF collaboration, says that Tevatron researchers are “cautiously excited” about the analysis. He points out that more data needs to be analysed to rule out a statistical fluke, which has happened several times before in particle physics.

Related: First Evidence of New Physics in b <--> s Transitions (research paper)posts tagged physicsMatter to Anti-Matter 3 Trillion Times a SecondQuantum Mechanics Made Relatively Simple Podcasts