20 Most Popular Post on the Curious Cat Science and Engineering Blog in 2016

Posted on December 26, 2016  Comments (0)

These were the most popular (by number of page views) posts on our blog in 2016.

photo of John Hunter with snow covered mountain peaks in the background

John Hunter, Olympic National Park (where the mountain peaks are colder and covered in snow)

Read more

Engineering Mosquitos to Prevent the Transmission of Diseases

Posted on December 20, 2016  Comments (3)

Mosquitos are responsible for huge amount of suffering and death. In 2015 200,000,000 people were infected with malaria and 500,000 died.

It is amazing what knowledge science has provided about the causes of human disease. It is great to have videos like this available that let us learn a bit about it from a short and understandable video.

Using our scientific knowledge to design and implement solutions offers great possibilities. But we also have to worry about the risks of such attempts. Making decisions about what risks to take requires well informed people that are able to understand the opportunities and risks and make intelligent decisions.

Related: Video showing malaria breaking into cellScientists Building a Safer Mosquito (2006)Engineering Mosquitoes to be Flying Vaccinators (2010)

PISA Science Education Results Show Singapore, Japan and Estonia Leading

Posted on December 14, 2016  Comments (2)

The most comprehensive comparison of student achievement in math and science around the globe is completed by the Organisation for Economic Co-operation and Development (OECD). The 2015 Program for International Student Assessment (PISA) focuses on science understanding of 15 year olds (the 2012 report focused on math).

2015 results for the science portion (rank – country – mean score)(I am not listing all countries):

  • 1 – Singapore – 556
  • 2 – Japan – 538
  • 3 – Estonia – 534
  • 4 – Taiwan – 532
  • 5 – Finland – 531
  • 6 – Canada – 528
  • 7 – Vietnam – 525
  • 8 – China – 520*
  • 9 – Korea – 516
  • 13 – Germany – 509
  • 13 – UK – 509
  • 23 – USA – 496
  • 26 – Sweden – 493 (this is also the OECD average)
  • 56 – Mexico – 416
  • 61 – Brazil – 401

* I am merging several distinct Chinese locations reported in the official report.

The 2015 PISA include 72 participating countries and economies. From the PISA report:

On average across OECD countries, 25% of boys and 24% of girls reported that they expect to work in a science-related occupation. But boys and girls tend to think of working in different fields of science: girls envisage themselves as health professionals more than boys do; and in almost all countries, boys see themselves as becoming information and communications technologies (ICT) professionals, scientists or engineers more than girls do.

Related: 2009 results of science education student achievement around the globe2012 results for the science portion (math was the focus in 2012)The Economic Consequences of Investing in Science EducationCountry H-index Ranking for Science Publications

Eating Nuts May Reduce the Risk of Heart Disease, Cancer and Other Diseases

Posted on December 6, 2016  Comments (4)

A large analysis of current research shows that people who eat at least 20g of nuts a day have a lower risk of heart disease, cancer and other diseases. The analysis of all current studies on nut consumption and disease risk has revealed that 20g a day – equivalent to a handful – can cut people’s risk of coronary heart disease by nearly 30%, their risk of cancer by 15%, and their risk of premature death by 22%.

While this is reassuring news to those of us (like me) that frequently eat nuts I am not sold on their evidence. Heath research is prone to overstating the benefits. Still there is little reason to avoid making nuts part of a healthy diet. That is a big part of the reason I have. They offer benefits and maybe even great ones (as indicated in this research) without much risk.

An average of at least 20g of nut consumption was also associated with a reduced risk of dying from respiratory disease by about a half, and diabetes by nearly 40 percent, although the researchers note that there is less data about these diseases in relation to nut consumption.

The study, led by researchers from Imperial College London and the Norwegian University of Science and Technology, is published in the journal BMC Medicine, Nut consumption and risk of cardiovascular disease, total cancer, all-cause and cause-specific mortality: a systematic review and dose-response meta-analysis of prospective studies (open access paper).

The research team analysed 29 published studies from around the world that involved up to 819,000 participants, including more than 12,000 cases of coronary heart disease, 9,000 cases of stroke, 18,000 cases of cardiovascular disease and cancer, and more than 85,000 deaths.

While there was some variation between the populations that were studied, such as between men and women, people living in different regions, or people with different risk factors, the researchers found that nut consumption was associated with a reduction in disease risk across most of them.

Read more

Backyard Wildlife: Family of Raccoons

Posted on November 19, 2016  Comments (4)

Mother raccoon with 3 babies

I took this photo of this mother Raccoon with 3 youngsters in my backyard. Raccoon’s are pretty big; it is somewhat amazing to me they manage to find enough to eat. I have seen individuals around over the years (not very often though) but only saw this family twice.

I continue to have many wildlife sightings in my backyard which is quite nice.

Related: Backyard Wildlife: FoxBackyard Wildlife: Great Spreadwing DamselflyRed-Shouldered HawkBackyard Wildlife: Turtle

Learning About Bacterial Biofilms

Posted on November 11, 2016  Comments (0)

Unlike bacterial biofilms can be visible to the naked eye. As with many instances of bacteria they are often harmless to us but when the bacteria are dangerous the biofilm offers them protection (which is why they form such structures).

Unlocking the secrets of bacterial biofilms – to use against them by Karin Sauer

The term “biofilms” suggests a thin, two-dimensional substance, but these communities feature microscopic-scale tower-like structures crisscrossed with water channels, all of which is encased in a protective, self-produced slimy layer. The bacteria within communicate and demonstrate cooperative behavior reminiscent of primitive organs.

According to the National Institutes of Health, more than 65 percent of chronic inflammatory and infectious diseases are due to biofilms. According to recent studies, biofilm-related infections claim as many lives as heart attack or cancer.

Scientists think there are several reasons for this decrease in susceptibility. First, the slimy layer encasing biofilms can make it hard for disinfectants or antimicrobials to even physically reach the bacteria. Also, bacteria living in biofilms experience high stress levels while growing rather slowly, which can render most antibiotics ineffective since they only work on actively growing cells. My favorite theory is that living in a biofilm changes bacteria and their behavior; something about their mix of active genes and proteins just makes them more resilient. Whatever the contributing factors, bacteria growing in a biofilm can be up to 1,000-fold more resistant to antibiotics than the same bacteria grown planktonically.

The use of biofilms predates our use of anti-biotics but the adaptation of forming biofilm communities serves as a protection against antibiotics and so it isn’t a surprise that with more use of antibiotics more surviving bacteria will be those using biofilm strategies.

Controlling biofilms in the future will likely require a combination of strategies, addressing both attachment and escape, with and without the use of antibiotics and communication blockers, and likely in a manner more or less tailored toward the different bacterial lifestyles.

Thankfully for us, we have many researchers exploring options to help us figure out how we can protect ourselves when we need to. We are going to need many different strategies to protect us going forward. Our success will depended on thousands of scientists working on these issues.

Related: Scientists Target Bacteria Where They Live (2009)Using Nanocomposites to Improve Dental Filling Performance (2012)Fighting Superbugs with Superhero Bugs (2015)The Search for Antibiotic Solutions Continues: Killing Sleeper Bacteria Cells (2013)

Chimpanzees Solving Numerical Memory Test Better Than People

Posted on October 29, 2016  Comments (5)

I can’t even see all the numbers before they disappear. But chimpanzees are shown seeing a flash of 9 numbers on a screen and then pointing to where they were on the screen in order from 1 to 9. Human test subjects can’t even do 5 numbers most of the time.

Related: Chimpanzees Use Spears to Hunt Bush BabiesOrangutan Attempts to Hunt Fish with SpearCrows can Perform as Well as 7 to 10-year-olds on cause-and-effect Water Displacement TasksTropical Lizards Can Solve Novel Problems and Remember the Solutions

Read more

The Challenge of Protecting Us from Evolving Bacterial Threats

Posted on October 22, 2016  Comments (0)

I have long been concerned about the practices we continue to use increasing the risks of “superbugs.” I have written about this many times, including: The Overuse of Antibiotics Carries Large Long Term Risks (2005)Are you ready for a world without antibiotics? (2010), Antibiotics Breed Superbugs Faster Than Expected (2010), Entirely New Antibiotic (platensimycin) Developed (2006), Our Poor Antibiotic Practices Have Sped the Evolution of Resistance to Our Last-Resort Antibiotic (2015).

I do also believe the wonderful breakthroughs we make when we invest in science and engineering have made our lives much better and have the potential to continue to do so in many ways, including in dealing with the risks of superbugs. But this is something that requires great effort by many smart people and a great deal of money. It will only happen if we put in the effort.

Winning war against ‘superbugs’

hey won this particular battle, or at least gained some critical intelligence, not by designing a new antibiotic, but by interfering with the metabolism of the bacterial “bugs” — E. coli in this case — and rendering them weaker in the face of existing antibiotics

ROS, or “reactive oxygen species,” include molecules like superoxide and hydrogen peroxide that are natural byproducts of normal metabolic activity. Bacteria usually cope just fine with them, but too many can cause serious damage or even kill the cell. In fact, Collins’ team revealed a few years ago the true antibiotic modus operandi: they kill bacteria in part by ramping up ROS production.

We need to continue to pursue many paths to protecting us from rapidly evolving bacterial risks. Many promising research results will fail to produce usable solutions. We need to try many promising ideas to find useful tools and strategies to protect human health.

Using Rats to Sniff Out TB

Posted on September 1, 2016  Comments (2)

Apopo’s African giant pouched rats are being used to sniff out mines and TB

In the face of what the World Health Organisation is calling a global TB epidemic, an innovative tech startup named Apopo is attempting to reverse the harrowing statistics, using rodents to sniff out TB in cough and spit samples.

No ordinary lab rats, Apopo’s African giant pouched rats – affectionately named HeroRats – are extremely sensitive to smell, with more genetic material allocated to olfaction than any other mammal species. They are also highly social animals, and can be trained to communicate with humans.

I have written about these wonderful rats previously, Appropriate Technology: Rats Helping Humans by Sniffing Out Land Mines. As I have stated many time I especially enjoy engineering solutions that use affordable and effective methods to help everyone.

Photo of Hero-rat detecting TB in Mozambique with Apopo staff person

Hero-rat detecting TB in Mozambique

A DNA-screening device that takes up to two hours to analyse each individual sample with 95pc accuracy costs $17,000 and thousands more in upkeep. By contrast, a HeroRat costs $6,500 to train, can probe through hundreds of samples every hour [70-85% accuracy rate], and requires only food, water and cages for shelter.

Keep these innovations coming. The USA needs them also given the massively costly healthcare system in the USA.

The TB sniffing rat program was developed through Apopo in Tanzania.

Related: Rats Show Empathy-driven BehaviorBeehive Fence Protects Farms from ElephantsTuberculosis Risk (2007)Dangerous Drug-Resistant Strains of TB are a Growing Threat (2012)

How Eratosthenes Estimated the Circumference of the Earth Over 2,000 Years Ago

Posted on August 25, 2016  Comments (4)

In this video Carl Sagan explains how Greek astronomer Eratosthenes, in 200 BC, was able to deduce and calculate the earth was a sphere about 40,000 km in circumference.

It is wonderful to see how a bit of thought and curiosity have lead mankind to learn so much.

Related: How do Plants Grow Into the Sunlight?Why is it Colder at Higher Elevations?Great Webcast Explaining the Digestive SystemBiology: How Wounds to Our Skin Heal

Promoting Open Science

Posted on July 30, 2016  Comments (2)

As I have written many times in the past we need to take back science from the closed-science journals. Historically journals were useful (before the internet). With the advent of the internet (and its spread) instead of maintaining the mission they started with the journals sought to maximize their profit and their own pay and jobs at the expense of sharing scientific knowledge with the world.

Elsevier — my part in its downfall by Timothy Gowers provides another good look at what can be done to promote science, math and engineering by addressing the damage to that goal being done by closed science publishers.

Recently he announced the launch of Discrete Analysis, a new journal that publishes to arXiv.

Disrupting the subscription journals’ business model for the necessary large-scale transformation to open access from the Max Planck Digital Library provides some good ideas for how to promote science in spite of the closed science journals fighting that goal.

There needs to be a shared understanding that the money currently locked in the journal subscription system must be withdrawn and re-purposed for open access publishing services. The current library acquisition budgets are the ultimate reservoir for enabling the transformation without financial or other risks.

Related: The Architecture of Access to Scientific KnowledgeWhy Copyright Extension is a Very Bad IdeaPublishers Continue to Fight Open Access to Science (2007)Harvard Steps Up Defense Against Abusive Journal Publishers (2012)